
Assumption:

Already know how to integrate the Oculus SDK and Leap Motion SDK into Unity.

Project Information:

● Description of Project

○ My project was a virtual reality application that allowed for cognitive agency

rehabilitation in patients through experiencing a gamified environment.

● How the project worked

○ A user will launch the application and will be put into an assessment level. The

whole game revolves around a simple task: being able to pick up a bottle and

place it in a coaster. The user will be placed within a box where the box will

change colors from red to yellow to green. Once the box is green a timer will start

measuring how long it takes for the user to place the bottle into the coaster.

Within the assessment level, the user will try to place the bottle in the coaster as

fast as he or she can. Based on the time it took the user to place the bottle into

the coaster he/she will be assigned to a certain level that will require them to

move faster to progress throughout the game.

● How does moving up levels work?

○ If the user gets placed into level 1 based on their performance in the assessment

level, he/she will need to place the bottle in the coaster within 10 seconds. If the

user manages to do that they will move to level 2 and the time required to place

the cup in the coaster will decrease.

● How can you lose?

○ Yes, every time a user fails to complete a level, meaning they don’t place the

bottle in the coaster within a certain time they will lose a life and have to redo that

level. If the user loses 3 lives he/she will lose the game.

● How Does Scoring Work

○ For every level, the user completes he/she will receive 100 points. If the user

drops the bottle he/she will lose 50 points. If the user gets placed into level 7

automatically he/she will receive 700 points.

● How does this relate to cognitive agency?

○ The more times the user attempts to play this game, the faster the room

surrounding the user will turn green(indicating for them to start to play). Overall,

the more the user plays the more their sense of agency is increased.

● Picture of the Unity Environment

○

○

Creating a Level
● Level UI

○ What Appears in a level:

■ The user is loaded into the scene and has 3 buttons to the right. One is to

start the timer, one is to reset the position of the bottle if it gets knocked

off the table and the last one is to stop the timer. After clicking the start

timer button the button disappears so the user won’t accidentally click it

again. Then the user finishes placing the bottle in the cupholder and

clicks the stop timer button. This checks whether the bottle is in the

coaster and whether to send the user to the next level. Notice how the

user has to move his head side to side to view all aspects of the

scene. Therefore when the user starts the scene at 0 degrees and

may end up x amount of degrees to the right. The camera position in

upcoming levels should account for this change. Please look at the

Setting Camera to fixed position guide to see how I tackled this

problem.

○ Setting Camera to a fixed position

■ Creating an environment in unity revolves around what the user sees.

This is where the camera element comes into play. The camera in unity

allows you to depict the specific view of the scene in the eyes of the

player. Especially when building a Virtual Reality scene your INITIAL

camera position matters a lot.

■
■ Between levels, as the user progresses the camera position resets the

entire environment. For instance, a user can be in level 1 turned 45

degrees to the right and when they move onto level 2 the initial 45

degrees to the right is viewed as 0 degrees. You can’t pass a camera

through levels to account for the user constantly shifting between levels. If

you face a similar problem to me, I ended up tilting the camera in levels 1-

7 20 units for their value.

■

■ This accounts for the user being physically already turned to the right

when they complete the previous levels. If this were not in place, the user

will constantly be turning more and more to the right throughout the

levels.

○ Fill in how you created User Interface

■ Legs

● Go to the Hierarchy on the left-hand side and create a 3-D object

called a sphere. Adjust the dimensions accordingly.

○
■ Table

● Follow the above steps and create a Rectangle and adjust your

x,y,z values to place the rectangle above your legs.

■ Coaster

●
● Create a rectangle for the sides and place it on top of a rectangle

on the bottom.

■ Button

●
● These buttons have a special pressable action that I will go into

more in-depth later on in this tutorial on how to use it. Feel free to

take this asset from my code.

○ Displaying Information to the user

■ Canvas

● How to Create a Canvas

○
● Scoring

○ Create a text element underneath the Canvas within the

hierarchy and edit it.

○
● Time

○ Create a text element underneath the Canvas within the

hierarchy and edit it.

● Backend Code

○ Enabling A Script

■ How does using scripts in C# work?

● By this point in the tutorial, I am hoping you know how to read and

write C# code. I am also assuming that you have the button object

from my code example to reference.

● Create an Empty Object in the scene you want to run your script

then for that object add a script component. This will run your

code as soon as the scene is loaded, so keep that in mind.

○ Score Tracking

■ Increasing score when user completes levels

● When you create a public variable in a unity script you will be able

to give inputs from the game object.

●
● For instance, the variable ScoreFromTheStartOfTheLevel was

assigned per level in the game object that I called the script in.

This allowed me to reuse the same script for each level but only

change the score value in the unity object. This allows me to know

what to add to the total score when the user completes a level.

■ Decreasing the score when the user drops the bottle

●
● I use the OnCollisionEnter method on the water bottle to check if it

ever hits the tabletop, if it does I deduct 50 points from the score.

● https://www.youtube.com/watch?v=bh9ArKrPY8w reference this

video.

○ Figuring out when the user placed the bottle inside the coaster

https://www.youtube.com/watch?v=bh9ArKrPY8w

■
■ I had used the same collision feature that detects whether the bottle is

touching the tabletop, however, this time I did it with the bottom of the

coaster. In this scenario, the coaster object name is “Bottom.”

● Integrating both Code and UI

○ How to integrate different levels and assign different information per level

■ As I mentioned above, if you make a value in your code public you will be

able to assign it input from the unity object that you connected the script

to.

■ https://www.youtube.com/watch?v=ck6OyNBC95c

● Reference how the developer now can pass a specific score text

value for the current scene he is developing. When used properly

this should allow you to reuse the scripts you make and just

change the values assigned for different levels.

○ How I enabled cognitive agency regeneration.

■ How do I track how many times the user has played the game?

● As I mentioned earlier I tracked the amount of time the user

played the game to speed up how fast the initial timer starts. The

more the user played the game the faster the timer would start

every round and the faster the user had to begin the task of

picking up the bottle and placing it within the coaster.

○ Tracking the number of times the user played the game

■
■ I created a file within the project that I would write

to after the application was quit. So essentially

every time the user played and finished the game I

would count that as 1 run and store that on a local

file within the project directory.

https://www.youtube.com/watch?v=ck6OyNBC95c

○ Using this data to enhance the game

■ I would read the number of times the user played

the game when the game initially was loaded and I

would adjust the delay the green screen came/

when the game started accordingly to how many

times the user played.

■
■ The greater times the user played (till 100 times

played) the smaller and smaller the delay was.

Once the user reached 100 times, I would just

permanently keep the delay at 0.

●

