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AUGMENTED SENSORY FEEDBACK TO ACCELERATE MOTOR 

PERFORMANCE WITH COMPUTERIZED INTERFACES FOR REHABILITATION 

 

ABSTRACT 

Neurological traumas can impair motor function and compromise the ability to perform 

activities of daily living. Physical rehabilitation can aid in motor recovery, but these 

practices are frustrating due to their rigorous and repetitive nature. Emerging rehabilitation 

technologies utilize computerized interfaces, such as virtual reality to increase participant 

engagement and better train muscle-level control. These interfaces can readily provide 

enhanced augmented sensory feedback, especially at visual levels, to accelerate motor 

outcomes. Still, there remains a lack of understanding in optimizing the deployment of 

augmented sensory feedback for clinical motor rehabilitation. In this research, I 

investigated how specific features of augmented visual feedback can improve motor 

performance during rehabilitation training. The two primary features of interest were 

complexity and intermittency, which vary the amount and frequency of visual guidance 

provided, respectively. A key supplementary feature of augmented visual feedback is the 

level of body representation to leverage visual embodiment, which was also examined. I 

evaluated unique combinations of these features to improve functional performance of two 

different motor rehabilitation exercises, representing either a motion- or force-based task. 

For a two-legged squat exercise (motion-based), augmented visual feedback that was 

relatively complex with more body-discernible guidance cues produced the best 

performance during and after training. The dynamic embodiment may have facilitated the 

ability to effectively synthesize more feedback information during a synergistic, multi-
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segment movement. Alternatively, training with simple feedback demonstrated a greater 

potential for motor learning of a task utilizing isometric muscle control (force-based). 

Complex feedback may have been interpreted as superfluous to this task, given the shifted 

emphasis to force control without dynamic embodiment. Thus, the additional cues may 

have hindered both learning and user experience, reflected in reduced performance and 

significant physical and cognitive stress changes. For training of either experimental task, 

intermittently providing visual feedback about real-time performance errors (i.e., 

concurrent bandwidth feedback) suggested a greater potential for motor learning. In 

conclusion, systematic variation of specific features in augmented feedback can 

significantly improve motor performance. Thus, optimizing computerized interfaces for 

motor rehabilitation requires a greater understanding of how sensory feedback affects the 

user for a given functional task. 
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1. INTRODUCTION 

Neurological traumas, such as stroke or spinal cord injuries, reduce functional capabilities 

in the lower- and upper extremities and reduce the ability to complete activities of daily 

living (ADLs) [1], [2]. Physical rehabilitation is commonly prescribed during treatment 

regimens to restore normative functions. During physical rehabilitation, participants 

benefit from external feedback cues to help improve performance, such as verbal 

instructions from the therapist or a simple mirror to monitor spatial positioning [3]. 

Computerized interfaces are engaging to the participant and can provide more informative 

external feedback cues, including immersive virtual reality environments using head-

mounted displays [4], [5]. Augmented sensory feedback, particularly visual feedback, can 

accelerate motor learning by guiding the participant towards a desired movement trajectory 

or muscle activation pattern [6]. The objective of visual feedback paradigms is to 

intelligently train the user for better movement performance and increase independence by 

improving functional capabilities. Unfortunately, there is a lack of integration between 

clinical rehabilitation and computerized interfaces, emphasizing improving motor 

performance (Figure 1). My research has identified features of augmented visual feedback 

for supplementary guidance during movement tasks [7], [8]. These features, identified as 

1) complexity, 2) body representation, and 3) intermittency, have unique advantages and 

disadvantages in motor learning based upon task-specific characteristics, including the 

participant’s experience. In this research, these features of visual feedback were evaluated 

in two distinct platforms to better understand the effects on improving motion and force 

control during muscle-driven exercises intended for rehabilitation. The two platforms were 
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a dynamic lower-body motion-based task, the two-legged squat, and an isometric upper-

extremity force-based task, where a machine learning classifier mapped muscle activity to 

movement within a virtual reality environment. The results of this research identified 

 

Figure 1: The research is a systematic evaluation of augmented visual feedback 

features to target the lack of optimization in the deployment between clinical motor 

rehabilitation and computerized interfaces. 
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optimal features for accelerating motor learning during physical rehabilitation at a 

participant-specific level. In the Introduction, I will provide background information 

regarding the central pillars of my research, including clinical motor rehabilitation, 

computerized interfaces, motor learning theory, and augmented sensory feedback.  

1.1.  Clinical Rehabilitation of Motor Function 

Neurological traumas, such as stroke and spinal cord injury (SCI), affect millions of people 

every year and are leading causes of death and disability [9]–[11]. 50% of SCI cases affect 

upper-extremity function [11], and up to 65% of stroke survivors have limited hand 

function 6-months following the injury [12]. People suffering from a stroke, or a traumatic 

brain injury, may require a more tailored sensory feedback paradigm than those having a 

spinal cord injury [13], [14]. For example, suppose damage to the brain lies in an area 

responsible for interpreting audio signals. It is crucial to consider the form of augmented 

sensory feedback as participants may have difficulty utilizing audio cues to improve motor 

performance. The functional capabilities of spinal cord injury participants are primarily 

dependent upon the injury site on the spinal column. For example, injuries to the lumbar 

section of the spine will mainly affect the lower extremities, while cervical level injuries 

will additionally affect autonomic and upper-extremity functions.  

Physical rehabilitation aims to restore independent function through repetitive task 

training by promoting strength, flexibility, and neuroplasticity [11]. The primary objective 

of motor rehabilitation is to restore functional abilities for movement activities through 

rigorous practices that improve motor skills transferrable to ADLs (Figure 2). Functional 

movement actions include walking, sitting, standing, reaching, or grasping objects. 
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Unfortunately, conventional rehabilitation processes are very time- and effort-intensive. A 

physical therapist will supervise and guide operational practices during conventional 

therapy regimens for persons with motor impairments [15], [16]. Physical rehabilitation 

for spinal cord injury typically includes joint exercises that facilitate greater strength and 

range of motion [16], [17]. Stroke rehabilitation typically centers on functional task 

 

Figure 2: Clinical motor rehabilitation can be improved by leveraging specific 

features of augmented sensory feedback for motion- and force-based tasks. 
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practice [18], where there are adjustments to difficulty levels for each person. For eligible 

persons with hemiparesis, therapists may incorporate constraint-induced movement 

therapy to compel more engagement of the affected side [19]. Conventional rehabilitation 

can become frustrating to participants due to its tedious and repetitive nature [15]. 

Computerized interfaces can be integrated with conventional rehabilitation to design more 

efficient motion- and force-based protocols to achieve functional gains with fewer 

repetitions. 

Conventional rehabilitation exercises are either motion-based or force-based, 

depending upon the action of the human body. Motion-based tasks, also known as dynamic 

exercises, are movements such as gait, sit-to-stand, or reaching. Tasks are commonly 

associated with ADLs and utilize concentric and eccentric muscle contractions to change 

joint angles of multiple body segments. Force-based tasks are isometric exercises that aim 

to promote greater muscle level control. Many ADLs employ both motion- and force-based 

tasks, such as reaching (motion) and grasping (force) for an object. Examples of isometric 

exercises in physical rehabilitation are leg extensions, wall sits, and side planks. Isometric 

exercises are usually done against an immovable object as they result in no change in 

muscle length, although tension and energy fluctuate to produce force. The capable force 

generated during an isometric exercise is wholly dependent on the length of the muscle 

[20]. During clinical motor rehabilitation, isometric exercises are uniquely beneficial as a 

bridge to dynamic functional tasks, as muscle weakness is a common clinical symptom of 

many neuromuscular traumas. Isometric exercises can increase strength and promote 
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healthy blood flow while being intrinsically safe and suitable for clinical populations with 

motion limitations [20]. 

Understanding the body's nervous and musculoskeletal system is necessary to 

leverage augmented sensory feedback for optimizing clinical motor rehabilitation. The 

brain has several regions implicated in sensory feedback-based rehabilitation. Motor cortex 

regions are directly responsible for movements of body extremities. The sensory cortex 

adjacent to the motor cortex interprets sensory signals to the brain, such as touch and 

proprioception, to inform movement control. The cerebellum is responsible for balance, 

interpreting visual signals, and integrating sensory and motor cues in both feedback and 

feed-forward loops. Damage to the cerebellum would negatively impact motor 

coordination and the ability to comprehend augmented visual feedback. The 

musculoskeletal system generates forces through muscles attached to the body’s skeletal 

system. Muscles are primarily responsible for movement and are soft tissue segments found 

across joints, bone to bone junctions. Muscles range in fiber pattern/structure and can 

consist of fast-twitch (type II) for rapid movements (e.g., eye muscles) to slow-twitch fibers 

(type I) for force generation and balance (e.g., soleus and back muscles). Other essential 

elements of the musculoskeletal system include ligaments attaching bone to bone, such as 

the anterior cruciate ligament (ACL), and tendons connecting muscle to bone, such as the 

Achilles. Following rupture of the ACL, commonly seen in athletics, rehabilitation with 

augmented visual feedback can reduce knee moment forces and help maintain a center of 

balance [21], [22]. Monitoring muscle activity, for example, the quadriceps muscle during 
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ACL rehabilitation [23], [24], is done through electromyography (EMG) sensors taped to 

the person’s skin on the muscle mid-belly. 

EMG sensors are a powerful tool of rehabilitation used to display muscle activity, 

especially during isometric force-based tasks. The real-time output from EMG sensors can 

also command myoelectric assistive devices, such as prosthetics or exoskeletons [25]–[27]. 

Clinical populations with severe injuries often require powered assistive devices to 

complete ADLs. Participants utilize residual muscle capabilities as a command interface 

to control robotic actuators, device joint angles, and applied forces. Unfortunately, 

inadequate training is one of the key contributing factors to the poor early adoption of 

myoelectric control [28]. Lack of motivation and faulty device functionality results in 20% 

of users reporting abandonment of their devices for more straightforward tools (e.g., hook 

hand) [29]. Augmented sensory feedback-based training has been proven effective for 

improving motor performance, and training powered assistive devices compared to no-

feedback groups [30]. For example, the addition of augmented visual feedback increased 

locomotor adaptation for transtibial amputees utilizing a powered prosthesis [31]. 

Computerized interfaces, such as virtual reality environments, can display EMG activity 

and augmented sensory feedback to improve clinical motor rehabilitation [32]. 

1.2.  Virtual Reality for Motor Rehabilitation 

Following neurological trauma, motor training with computerized interfaces offers 

advantages, compared to conventional therapies, in terms of data monitoring and increases 

in cognitive engagement [33]. Virtual reality (VR) is used in clinical motor rehabilitation 

to motivate the participant [2], [34], [35] and, in some cases, can increase strength and 



8 
 

 

endurance compared to conventional therapy [36]. Integrating VR environments into 

physical rehabilitation began decades ago [37]. However, the technology was nowhere near 

today's options, and equipment could cost thousands of dollars for a fully functional 

system. Today, VR is much more affordable and allows for creating enhanced augmented 

sensory feedback unobtainable in conventional therapy. Adding VR-based rehabilitation 

to conventional therapy regimens has improved functional outcomes in able-bodied and 

neurotraumatic populations [37]–[39]. The success of VR rehabilitation has been mainly 

attributed to increasing motivation and simulating task practices that have high physical 

and cognitive fidelity to ADLs [37]. Virtual reality introduces immersive and customizable 

environments with gamifying elements [40] that increase cognitive engagement [41] and 

reduces neuropathic pain in people recovering from neurological trauma [42]–[44] 

(Figure 3). Although VR shows promise for neurorehabilitation, it remains unclear 

whether it is more effective than conventional therapy. Some studies have found that the 

effects on motor learning are equal when the training dosage is equal [45]. Although one 

treatment may not be more effective, participants tend to enjoy VR therapy more, 

motivating them to continue their rehabilitation regimen [41]. Still, there is a lack of 

systematic evaluation of the effects of various components of VR-based motor 

rehabilitation that integrates augmented sensory feedback to accelerate motor performance. 

Given the powerful flexibility and customizability of computerized interfaces, the 

effectiveness of VR rehabilitation lies in the more intelligent design of augmented sensory 

feedback.  
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When developing a VR-based rehabilitative task, the level of immersion and 

participant’s perceived sense of presence might affect performance. Immersion is 

quantifiable and dependent upon the equipment used [46], and a participant’s sense of 

presence is qualitative and defines the participant’s perception of immersion in the VR 

 

Figure 3: Virtual reality is used to increase cognitive engagement through gamified 

environments that display augmented sensory feedback for motor rehabilitative tasks.  
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environment [36]. Yao and Kim [36] describe it as, “Immersion is a synchronicity of media, 

user, and contents where presence is only a human consciousness of being there.” 

Immersion ranges from low, moderate/medium, or high immersion, depending upon the 

technology used. Slater and Wilbur identified five categories to quantify immersion: 

inclusive, extensive, surround, vivid, and matching [47]. Each of the five categories 

influences but is not the sole determinant of the participant's perceptual experience. Miller 

et al. briefly described each category in an easy-to-read table format. They evaluated how 

immersion impacts the ability to assess and teach social skills in people with autism [46]. 

Highly immersive VR environments may increase strength and endurance [36], but more 

straightforward tools such as computer monitors may outperform head-mounted displays 

for simple tasks [16]. The participant’s sense of presence versus technological complexity 

is often U-shaped, similar to the “uncanny valley” associated with the representation of 

human faces [49]. For example, a traditional computer interface with a monitor, speakers, 

keyboard, and mouse provides a greater sense of presence than a low-quality VR headset. 

Memory tasks do not directly improve by increasing the quality of 3D models in VR; 

however, increased sense of presence can improve memory task results [50]. Task-

irrelevant immersive elements, such as extraneous objects, may detract from memory 

retention tasks if they distract from the desired stimulus [51]. These two principles imply 

including immersive elements into clinical motor rehabilitation has an unknown but ideal 

number that appears natural to the user but does not distract them from their assigned task. 

This number is likely different for individual users, making designing these VR 

environments difficult. Fortunately, VR lends itself to enhanced forms of augmented 
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sensory feedback and immersion for optimizing clinical motor rehabilitation at a 

participant-specific level.  

1.3.  Augmented Sensory Feedback for Motor Training 

Augmented sensory feedback provides visual, audio, or haptic cues to improve 

performance during functional tasks and accelerate motor learning [6]. Augmented 

feedback is a transformed display of the participants’ performance, such as a bar graph 

representing grasp force or isometric muscle activity. Examples of VR-based augmented 

visual feedback are transparent target body positions that overlay a first-person perspective 

to guide spatial positioning [52]. The primary mechanism in any feedback modality is to 

provide information about participant performance either in real-time or immediately 

following task completion. Providing information about their performance allows them to 

make corrections or impose a self-competition element for improvement [41]. The optimal 

type of feedback to apply relies heavily on participant experience and the complexity of 

the task [53].  

Compared to audio and haptic, augmented visual feedback is best for guiding 

spatial positioning [54], [55]. Audio and haptic feedback have advantages in unimodal 

situations, especially in simple tasks where visual feedback can be distracting. Audio 

feedback can cue the participant to start or stop an experiment and provide complex 

performance variables such as sonification error for standing or walking balance. Haptic 

feedback is a general term for anything related to touch sensation and can provide 

sonification of balance error through tactile actuators or vibration motors attached to the 

participant. Multimodal feedback, most commonly audio-visual or visuo-haptic, provides 
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multiple sensory modalities as multiple sources of performance information and has been 

proven effective at accelerating motor learning in complex tasks. 

Another term for sensory feedback is biofeedback, and it means providing 

biomechanics data back to the user to improve physical rehabilitation. Biofeedback has 

two primary types: biomechanical and physiological, each with three feedback categories 

[56]. Biomechanical data types include movement, postural control, and force utilizing 

motion capture and force plate systems. Physiological data types include neuromuscular, 

cardiovascular, and respiratory and use biological sensors to measure signals such as 

muscle activity or heart rate variability. Giggins et al. (2013) identified two strategies for 

providing feedback [56]: 1. Direct feedback, where the measured variable is explicit, such 

as heart rate variability directly from a watch, and 2. Transform feedback, where the 

measured variable maps to an audio, visual, or haptic feedback system. The second 

strategy, transformed feedback of biomechanical data, is my focus and how to optimize the 

type of transform feedback to achieve the desired motor rehabilitation outcomes. 

1.3.1.   Training versus Retention 

Motor learning can be described as developing intrinsic mechanisms, such as muscle 

memory or proprioception, to repeat a movement independently. Physical rehabilitation 

has two distinct phases leveraged throughout any learning session, training and retention. 

The training phase is when augmented sensory feedback improves task performance by 

guiding the participant towards a desired movement trajectory or muscle activity pattern. 

The retention phase has no sensory feedback, forcing the participant to perform the task 

independently without movement support [3]. High performance during the training phase 
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will induce the desired motor outcomes and benefits tasks of high complexity, such as full-

body movements or controlling a myoelectric device. High performance during the 

retention phase indicates improvements in long-term learning and the development of 

independent movement strategies. Transfer tests can also evaluate retention. A transfer test 

is a different task presented during retention tests than during training to assess the 

transferability and generalizability of the benefits on non-practiced movements and muscle 

control [3]. It is important to note that high performance during training does not correlate 

to increased performance during retention; the opposite often occurs [57]. Optimizing VR 

rehabilitation paradigms depends on participant-specific needs to identify which phase of 

motor learning, training, or retention is most valuable. For example, a person learning to 

use an exoskeleton for the first time will benefit significantly from high performance during 

the training phase. As the person gains independence and moves towards at-home usage, 

value moves from the training phase to the retention phase of physical rehabilitation. 

1.3.2.   Theories of Motor Learning 

Multiple motor learning theories and previous research have created a foundation for 

augmented sensory feedback-based motor rehabilitation. The guidance hypothesis is a 

motor learning theory that indicates that higher reliance on feedback for assistance during 

training will negatively affect retention [58]–[60]. When augmented sensory feedback is 

constantly provided during training or in a high frequency of trials, participants rely on the 

feedback for movement support. The ideal augmented sensory feedback would result in 

sustained performance in retention trials, indicating improved independence and muscle 

level control during training trials. The guidance hypothesis is traditionally evaluated over 
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an extended period by altering the frequency of feedback as motor learning improves, 

including retention trials interspaced with training trials [58]–[60]. This theory is the basis 

for many other motor learning theories in that forcing participants to practice a movement 

on their own, and develop independent movement strategies, is beneficial for long-term 

learning.  

The specificity of practice hypothesis suggests that learning is specific to the source 

of afferent information that is more likely to ensure optimal accuracy [61]. In other words, 

the task presented during training should closely resemble the desired motor or muscle 

control, and the feedback provided should be relevant to the task at hand. There are 

examples of presenting a different test during retention, known as transfer tests, to evaluate 

the transferability of functional outcomes. High performance during training trials does 

not always coincide with high performance during retention; in fact, the opposite trend 

often occurs [57]. Participants often believe that if they are performing well during training 

trials, they must be learning the best they can. It is crucial to ensure participants are 

constantly challenged during training to help accelerate the learning process. Additionally, 

having the participants perform a wide range of training exercises may be more 

advantageous than repeating the same task over numerous sessions. The review by 

Soderstrom and Bjork breaks down many examples of ways to structure rehabilitation 

paradigms to accelerate motor learning, including latent learning, distribution and 

variability of practice, and metacognition [57].  

The participant's focus of attention during training can dramatically affect motor 

learning. Instructing participants to focus on an extrinsic part of the rehabilitative task will 
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improve motor learning more than an intrinsic focus point [3]. An example is while 

learning to kick a soccer ball, should you focus on your leg and foot throughout the motion 

(intrinsic), or should you focus on the trajectory of the soccer ball (extrinsic)? An extrinsic 

focus typically outperforms an intrinsic one for improving motor learning. The 

participant’s experience level will affect the optimal amount and frequency of augmented 

sensory feedback during training trials. It is necessary to understand which stage of motor 

learning the participant is at or how much experience they have with the motor task. Fitts 

and Posner introduced the three stages of motor learning in the 1960s: the Cognitive stage, 

the Associate stage, and the Autonomous stage [62]. During the first stage, the Cognitive 

stage, the participant would have little experience with the task, and errors to the target 

trajectory improve over a few short training sessions. Movements are slow, and 

considerable cognitive activity is required to control actions consciously. During the 

second stage, the associate stage, movements become more fluid, and less cognitive 

activity is required. During the final autonomous stage, movements become more 

consistent, and little to no cognitive activity is required. Improvements during the last two 

stages take much longer than the first stage.  

Finally, there are distinct techniques for increasing cognitive engagement during 

motor rehabilitation [41]. Zimmerli et al. (2013) identified feedback elements for 

increasing engagement and motivation during robotic-assisted gait exercises. The first 

element is ensuring that participants can interact with their environment. Compared to 

walking on a treadmill without VR, participants integrated with a moving VR environment 

without external feedback cues were motivated to work harder. A second element is the 
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introduction of real-time performance cues, which is the basis for augmented sensory 

feedback rehabilitation. By providing participants with an average gait velocity over time, 

researchers introduced an element of self-competition that significantly increased 

motivation and motor performance. Finally, they investigated the response to external 

competition as a virtual opponent. This final element was inconclusive as some participants 

enjoyed the external competition while others did not. Augmented sensory feedback that 

represented real-time participant performance significantly improved motivation and 

performance compared to the control group. 

1.4.  Features of Augmented Visual Feedback 

Augmented visual feedback provides external cues during physical rehabilitation and is 

superior to audio and haptic feedback for guiding spatial positioning. We have identified 

features of augmented visual feedback for guiding spatial positioning during motor tasks 

to optimize clinical rehabilitation. In general, visual feedback helps produce consistent 

movement or muscle control for improving physical rehabilitation, such as improving 

isometric muscle control or helping restore natural gait [63]. Example gait improvements 

with visual feedback training include reducing joint moments [64], improving symmetry 

[65], increasing forward propulsion [66], and increasing stride length [67]. Improvements 

with visual feedback in assistive device training for various clinical populations range from 

wheelchairs [68] to prosthetics [31], [69]. There are many different modalities for 

providing visual feedback, including television screens [70], computer monitors [31], [66], 

signal lights [71], laser pointers [72, p. 2], and immersive virtual reality head-mounted 

displays [69], [73]. The optimal viewing modality can be influenced by the complexity of 
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the task, as simple tasks often benefit more from simple feedback, and highly complex VR 

environments may be distracting or cognitively overloading. In VR, augmented visual 

feedback is the most exploitable sensory modality. VR introduced enhanced forms of 

augmented visual feedback, unable to be replicated in conventional therapy, such as 

complex avatars of one’s position [52] or a target position represented as an instructor or 

virtual mirror [74]. Motion- and force-based motor tasks utilizing augmented visual 

feedback integrated with VR include guiding upper-arm position [75], [76], providing real-

time muscle activity for controlling a prosthetic device [32], and training medical students 

on specific surgery practices [77]. Features of augmented visual feedback for guiding 

spatial positioning during motor tasks include 1) complexity (simple versus complex), 2) 

body representation (abstract versus representative), and 3) intermittency (continuous 

versus bandwidth) (Figure 4). These features are leveraged during VR-based rehabilitation 

to accelerate motor learning at a participant-specific level. One additional feature, timing, 

is defined in the following section and is a feature unique to augmented visual feedback 

already extensively researched in motor learning.  

1.4.1.   Timing (concurrent versus terminal) 

Timing is a feature unique to augmented visual feedback that has already been extensively 

researched and directly means when to provide the feedback to the participant. Concurrent 

feedback is real-time information about performance, such as participant spatial position 

to match a desired movement trajectory, and helps the participant immediately reduce error 

to the target. Terminal feedback is provided after the exercise within a few seconds and 

includes information about the previous trial to help adjust for the next one [6]. Terminal 
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feedback has demonstrated comparatively better benefits in long-term retention [58], [59], 

but concurrent feedback generates more immediate performance improvements [78]. 

Concurrent feedback is most beneficial in the early stages of motor learning when the 

participant is inexperienced or naïve to the task, making significant adjustments and 

notable changes in performance [62]. Terminal feedback becomes beneficial in the latter 

stages of motor learning as the participant makes more minute changes and improves long-

term learning [62]. Compared to terminal feedback, concurrent feedback can be ineffective 

for training simple tasks [53]. However, complex tasks such as multi-segmented 

movements benefit from concurrent feedback, especially in the early stages of motor 

learning [53], [62]. Concurrent feedback paradigms are most effective if they guide the 

learner toward an optimal movement while also reducing dependency on movement 

 

Figure 4: During training with augmented visual feedback to improve motor control, 

different features are evaluated for guiding spatial positioning to identify the optimal 

design to accelerate performance. 
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support [6]. Over-reliance on concurrent feedback degrades the development of intrinsic 

mechanisms [58], [60], which contribute to independent movement strategies. Terminal 

feedback aims to eliminate reliance on the feedback for movement support to reinforce the 

development of intrinsic mechanisms [55], [78], [79]. When developing clinical motor 

rehabilitation paradigms, the participant’s experience and stage of motor learning will 

determine concurrent and terminal feedback. Some studies have found that combined 

concurrent and terminal feedback can be advantageous if still interspaced with retention 

trials [78]. In my research, all augmented visual feedback was examined as concurrent 

feedback to investigate the real-time adaptation of motor performance and potential 

learning in short-term retention tests. 

1.4.2.   Complexity (simple versus complex) 

The first feature of augmented visual feedback we identified to leverage during motor 

rehabilitation is complexity and defines the amount of visual feedback provided. The 

complexity of visual feedback and the complexity of the motor task have similar 

definitions. Wulf and Shea (2002) defined simple tasks as capably learned in one session 

or are a single degree of freedom, while complex tasks have multiple degrees of freedom, 

require numerous training sessions to master, and are more ecologically valid [53]. Visual 

feedback complexity shifts from simple to complex as more targets are presented [6], [7]. 

Simple feedback provides a single DOF or variable about performance, and complex 

feedback provides two or more [7]. The optimal visual feedback complexity depends on 

the complexity of the task, i.e., overly complex feedback could be detrimental when 

training simple tasks. 
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Given their simplicity of function, simple visual feedback providing one 

performance variable is appropriate for one-dimensional or isometric tasks [6], [53]. 

Radhakrishnan et al. [80] found significant differences during a postural sway task for 

motion performance across different simple feedback types, utilizing visual and audio cues. 

Continuous feedback generated better endpoint precision but more significant movement 

intermittency than more discrete forms. Additionally, simple feedback can provide either 

spatial or temporal information. Different types (position versus temporal, mean versus 

variability) of simple feedback presented during training produce different performance 

and retention outcomes for the same motor task [81]. The spatial or temporal performance 

metric presented during training had the highest performance during retention tests. 

Complex feedback is advantageous for movements with high complexity when the 

information is relevant to the task but does not hinder performance by being overwhelming 

or providing too much information [73], [82]. For example, for training a complex dance 

movement, reduced feedback with only four variables about spatial position generated 

improved retention in performance compared to being trained with twelve [73]. This 

finding suggests complex feedback is beneficial if it only presents the most important 

features of motor performance and removes extraneous information.  

Simple feedback is more appropriate for simple tasks as a singular focus target. The 

high focus on a distinct target may result in increased performance during training but may 

result in degraded development of intrinsic mechanisms [7]. On the other hand, complex 

feedback may cognitively overload or be ineffective during training if the participant finds 

the information irrelevant to the task. Complex feedback can be advantageous in real-time 
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performance, providing more targets to guide multiple performance metrics. However, the 

body representation of the augmented visual feedback is crucial for allowing the participant 

to embody the feedback during training for improved results during retention tests. 

1.4.3.   Body Representation (abstract versus representative) 

Another feature of visual feedback to be leveraged for motor rehabilitation is if the 

feedback displays body-discernible features. Abstract feedback displays training 

performance as line plots or bar graphs with no body-discernable features. In contrast, 

representative feedback—also known as natural—has apparent body-discernable features 

such as virtual avatars or mirrors of the participant's spatial position [6]–[8] (Figure 5). 

There is a natural connection between simple-abstract and complex-representative 

feedback [6].  

Abstract feedback is considered best for simple tasks because of the simple nature 

of the feedback, typically a single line to trace or bar graph. For example, for EMG-driven 

prosthetic training, hand grasp force can be provided as a bar graph to train muscle level 

control [83]. Representative feedback is best for complex movement tasks [53], such as 

multi-joint movements that may appear disjointed when displayed as independent abstract 

lines [7]. In VR-based rehabilitation, complex-representative modes of augmented visual 

feedback help to train movement tasks [52] or simulate prosthetic devices in the virtual 

environment [84], [85]. During any whole-body movement, such as the gait or squat 

exercise, complex-representative visual feedback helps the participants embody the 

feedback display, leading to a greater development of multi-joint intrinsic mechanisms than 

abstract displays. After comparing combinations of augmented visual feedback features 
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(complexity and body representation) for the two-legged squat exercise in my thesis 

studies, complex-representative feedback demonstrated increased consistency in motion 

and muscle activity patterns [7].  

 

Figure 5: The augmented visual feedback feature of body representation is defined as 

either A) abstract or B) representative depending upon the body-discernibility of the 

target feedback. Abstract displays have no body-discernible elements while 

representative has clear body-discernibility. Different features provide different 

methods of guiding spatial positioning for motor tasks, i.e., reach-to-grasp. 
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Abstract feedback is appropriate during force-based motor exercises to maintain 

force control or muscle activity when representative feedback cannot relay the desired 

outcome measure. One disadvantage of complex-representative in augmented visual 

feedback is that it is only effective at guiding spatial positioning during movement 

exercises. Representative feedback would be ineffective for isometric or force-based tasks 

unless forces translate to virtual movements. 

1.4.4.   Intermittency (continuous versus bandwidth) 

The final feature of augmented visual feedback during motor rehabilitation depends on the 

frequency of visual feedback provided during training. Continuous feedback involves 

constant, uninterrupted presentation of an individual’s performed actions against desired 

targets throughout the movement task [86]–[88]. The classic approach to accelerate motor 

learning, presented earlier as the guidance hypothesis, is to effectively reduce the frequency 

of terminal feedback trials by interjecting additional retention trials [58], [89]. 

Theoretically, reducing the frequency of feedback trials promotes the development of 

independent movement strategies and improved intrinsic mechanisms [58], [59]. Reduced 

frequency of feedback methods to accelerate motor learning are faded [81], self-selected 

[90]–[93], and bandwidth [82], [94], [95]. Bandwidth feedback is the only reduced 

frequency paradigm developed for concurrent feedback. 

Bandwidth feedback is the intermittent presentation of visual cues based on a 

performance criterion, such as movement error to a target trajectory. During bandwidth 

feedback, feedback is not displayed in times of low error but only when the error exceeds 

a performance threshold. These ‘bands,’ positive and negative error to a target trajectory, 
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aim to stabilize performance at certain error levels (e.g., 5%, 10%, or 15% of maximum 

error) [96], [97]. The working principle with bandwidth feedback for long-term learning is 

to reduce reliance on the feedback as performance improves progressively. Typically, 

bandwidth feedback uses terminal feedback [82], [94], [95], [97]–[99]. Relatively fewer 

studies have investigated performance with concurrent bandwidth feedback. Examples 

include an isometric force task [87], a driving simulator [100], and the two-legged squat 

exercise [8]. For a single joint isometric force task, concurrent bandwidth feedback 

generated higher variability but higher regularity to a force target than continuous feedback 

[87]. They postulated that bandwidth feedback induced greater reliance on intrinsic 

mechanisms that produced lower approximate entropy. Concurrent bandwidth feedback 

showed more significant learning potential for the two-legged squat than continuous 

feedback [8]. Although the effects of concurrent bandwidth feedback on long-term motor 

learning have been under-researched, there is potential to improve short-term retention 

with implications for long-term regularity [87]. 

Continuous feedback is most advantageous in the early stages of motor learning 

until the participant begins to gain experience. Once they understand the motor task and 

desired outcomes, it is beneficial to transition to concurrent bandwidth feedback and 

terminal bandwidth to reduce reliance on the feedback for movement support gradually. 

Continuous feedback is best for increasing real-time performance, while bandwidth 

feedback shows potential for improving retention [8]. 

 Other forms of augmented sensory feedback, including audio and haptic, 

effectively improve motor performance. Augmented haptic feedback as vibration can 
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provide therapeutic benefits to neuro-deficit populations by recruiting additional muscle 

fibers [101] or positively affecting proprioception during motor rehabilitation [102]. Haptic 

feedback also enhances integration and immersion during VR-based rehabilitation [83], 

[103], [104]. Augmented multimodal feedback, combinations of visual and vibration, 

effectively improves motor performance and provides therapeutic benefits during complex 

motor rehabilitative tasks [6], [105]. 

1.5.  Potential of Multimodal Feedback 

Note from Author: “For a good part of my Ph.D. journey, I investigated vibration – or 

vibrotactile – feedback to create novel augmented multimodal (visual + haptic) feedback 

paradigms for improving task performance. Due to unforeseen circumstances, including 

and not limited to COVID, I decided to focus more of my time on visual feedback within 

virtual reality to ensure the quality of the work was high instead of trying to spread myself 

thin with a fully-fledged haptic feedback project. However, I did a lot of research and 

several pilot experiments (see Appendix) into the advantages of utilizing augmented haptic 

feedback, both in unimodal and multimodal paradigms.” – Sean Sanford 

Augmented haptic feedback is a broad term that encompasses any modality related 

to touch sensation [6]. Examples of haptic feedback include changes in applied forces, 

pressure, vibration, or temperature to relay information about the environment to the user. 

During physical rehabilitation, one example of haptic feedback is providing vibration 

repulsion or attraction to guide the participant towards the target movement trajectory 

[106]. Mapping haptic feedback magnitude, such as vibration magnitude, to position error 

provides additional levels of complexity and information about performance [107], [108]. 
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In more complex scenarios such as utilizing an EMG-controlled assistive device, providing 

real-time haptic feedback mapped to hand force feedback results in greater user-device 

integration and improved task performance [83], [103]. This phenomenon can be described 

as sensory substitution and helps amputees or people with neurological trauma discern 

magnitude changes in device force control or proprioceptive movement error [109], [110]. 

A common form of augmented haptic feedback is applied forces or modulating the 

effort required by the participant (i.e., sensitivity). In a simple analogy, adding weight 

during strength training would add additional “forces” to affect motor rehabilitation. 

Another example of applied forces in motor learning is the effects of perturbations during 

gait, balance, or reaching studies. Two types are real perturbations, such as being pushed 

or pulled during gait or balance training, or visual perturbations applied in a VR 

environment to evaluate reaction time or internal movement models [111], [112]. Another 

example of applied forces includes modulating the sensitivity of a joystick commonly used 

in upper extremity motor rehabilitation or computerized interfaces for gaming [113].  

A second augmented haptic feedback modality is vibration. Vibration is applied 

through an external device, such as a handle or standing platform, or vibration motors 

attached directly to the person’s skin. Traditionally, vibration can produce unwarranted or 

adverse effects, such as the long-term usage of jackhammers by construction workers. 

Recently, researchers have been exploring vibration in more controlled environments to 

provide therapeutic benefits. Vibration feedback – also known as vibrotactile feedback – 

can be described as explicit or implicit depending upon its connection to task performance. 

Vibration is explicit if the cues are directly related to task performance or the participant 
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focuses on utilizing the vibration to complete the task. Vibration cues range from velocity 

or position-dependent for upper extremity tasks by mapping error magnitude to vibration 

magnitude [114]. Another example of explicit haptic feedback includes mapping vibration 

magnitude to error magnitude during standing balance [115]. Multiple vibration motors 

can cue direction relative to a target trajectory [108]. One disadvantage of explicit 

augmented haptic feedback in conjunction with visual feedback is the possibility of 

cognitive overload, especially when tasks can be deemed simple enough to be mastered 

with visual feedback alone [108]. 

Implicit vibrotactile feedback is not directly coupled to task performance and can 

alter a participant’s muscle activity or produce an illusory movement [101], [102]. These 

effects are unique to vibrotactile feedback because of the ability to affect afferent signal 

pathways and induce muscle stretch reflexes. The first implicit form of vibration includes 

whole-body vibration [116], [117]. It is common to the earlier jackhammer analogy as 

whole-body vibration can be detrimental if exposed for an extended duration. In recent 

years, researchers have been examining the therapeutic effects of vibration on muscle 

activity training. During isometric exercises, applying vibration universally increases EMG 

activity in both agonist and antagonist muscles [118]. For example, indirect vibration 

through an external device at the hands or feet may increase the EMG response during 

isometric exercises by recruiting additional muscle fibers [101], [119]. Factors such as 

vibration frequency, amplitude, and target force magnitude dramatically influence the 

subsequent effects on EMG activity compared to control groups without vibration [101]. 

Vibration also increases fatigue, believed to be due to the recruitment of additional motor 
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units. Muscle fatigue is identified through frequency-domain analyses of the EMG activity 

by examining the mean or median frequencies [120].  

The second form of implicit vibration alters user proprioception by applying direct 

vibration at the muscle-tendon junction. Direct muscle-tendon vibration may lead to an 

illusory movement effect in the direction of muscle stretch [102], such as a sensation of 

elbow extension during vibration on the proximal or distal bicep tendons. Unlike whole-

body vibration, creating an illusory movement requires lower vibration frequencies to 

induce the desired effect and is more successful with Linear Resonant Actuators (LRAs). 

LRAs are vibration motors that act more like a ‘piston’ and require much more complex 

devices to control the various parameters (magnitude, amplitude, frequency). Eccentric 

Rotating Mass motors, often seen as small coin motors, are not as effective at inducing an 

illusory movement effect but can be utilized for other forms of augmented haptic feedback. 

Integrating VR with implicit vibration has been shown to amplify the observed illusory 

movement effect and shows potential for more effective therapy in people with severe 

sensory dysfunction [121]. 

 Another unique form of augmented haptic feedback is electric stimulation, either 

to the muscle, nerve, spine, or brain levels [122]. Electrical stimulation can help to reduce 

neuropathic pain, reduce spasms, and reduce muscle atrophy in people suffering from 

neurological trauma. For example, functional electrical stimulation applied directly to the 

muscle mid-belly on the skin surface can be therapeutic following neurological trauma. 

Stimulating the muscles, whether involuntarily or voluntarily controlled, can increase 

blood flow and promote neuroplasticity during motor rehabilitation [123]. Stimulation 
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applied in conjunction with motor rehabilitation tasks can assist participants in completing 

the movements when they may be unable to do them independently, such as ankle 

dorsiflexion for gait or hand function for reach to grasp. Combining one or more modes of 

augmented sensory feedback to create unique multimodal–also known as multi-sensory–

feedback applications has shown promise in accelerating motor learning and improving 

motor performance [6].  

Multimodal feedback increases the required attention during training, an advantage 

being high performance, but would be detrimental to developing long-term learning effects 

due to less reliance on intrinsic mechanisms. Multimodal feedback, such as audio-visual or 

visuo-haptic, can increase performance beyond unimodal sensory feedback [105]. The 

combinations of audio and visual (audio-visual) or haptic and visual (visuo-haptic) are 

more common than audio and haptic because of the required focus to use each sensory 

modality effectively. Augmented audio and haptic feedback can be considered less 

distractive and require less attention during movement tasks than visual feedback. A 

limitation of multimodal feedback is ensuring no cognitive overload that may prove 

detrimental to the participant.  

Several experiments have investigated the positive benefits of integrating 

augmented haptic feedback with visual feedback and VR to improve motor rehabilitation. 

The most straightforward example of incorporating haptics into VR-based rehabilitation is 

the addition of applied pressures or vibration to improve motor performance or increase 

user-device integration. By providing vibration magnitude mapped to force magnitude on 

the nearby residual limb or another intuitive location, users can modulate low, medium, 
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and high forces within a VR environment to significantly improve myoelectric device 

function [83]. Additionally, augmented vibrotactile and visual feedback guided upper-limb 

movements [108]. Compared to visual alone, vibration only benefitted simple, 1-degree-

of-freedom (DOF) movements. The addition of augmented vibrotactile feedback did not 

benefit the training of complex (2+ DOFs) movements. During upper-arm robotic therapy, 

Scotto di Luzio et al. (2020) evaluated vibrotactile and visual feedback on improving 

posture [124]. Participants completed a robot-aided upper-extremity movement task to 

reach a target displayed in the virtual environment. Their results indicated that both 

feedback methods effectively improved head and neck angles compared to the control 

group and are valid solutions for real-time posture assessment.  

In some cases, augmented haptic feedback did not help improve the performance 

of upper-extremity tasks or was detrimental when combined with visual feedback. The 

ineffectiveness is possibly due to the complexity of the task evaluated and the participant's 

experience. When tasks are considered simple or the participant is inexperienced, the 

proposed benefit of multimodal feedback could result in cognitive overload. Hasson and 

Manczurowsky (2015) determined that vibration did not improve an upper-extremity task's 

skill acquisition when presented independently or with visual feedback [114]. The task they 

evaluated was a simple, 1-DOF movement in which participants controlled the swing of a 

virtual myoelectric prosthetic arm. Their results concluded that augmented vibrotactile 

feedback could be detrimental as some participants may have had difficulty integrating the 

haptic information with the virtual component. I believe a more complex task with multiple 
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DOFs may demonstrate opposite results where augmented haptic feedback could be 

beneficial when combined with visual feedback.  

Implicit types of vibrotactile feedback, as mentioned before, are not directly 

coupled to task performance. Physiological effects of vibration, including altering EMG 

signals or producing an illusory movement effect, can have therapeutic benefits in VR-

based rehabilitation. A therapeutic effect of implicit haptic feedback, in any form, 

combined with visual feedback and VR, is the reported reduction in neuropathic pain and 

improved neuroplasticity, similar to ‘mirror therapy.’ Compared to traditional therapy, 

Saleh et al. (2017) reported greater cortical reorganization and greater improvement in 

clinical measures of post-stroke participants following a novel robotic-assisted upper-

extremity VR task [125]. Bassolino et al. (2018) created a novel brain-computer interface 

for inducing embodiment and an illusory movement within a VR environment to observe 

user-controlled mirror therapy [126]. They utilized a unique form of haptic feedback by 

combining transcranial magnetic stimulation (TMS) with VR to create a TMS-evoked 

mirror therapy effect. Two studies, Pozeg et al. (2017) and Le Frank et al. (2020), utilized 

VR to enhance the illusory movement effect and therapeutic benefits induced by 

augmented vibrotactile feedback. Pozeg et al. (2017) determined that vibrotactile feedback 

reduced neuropathic pain in SCI participants and improved embodiment within the virtual 

environment [42]. Le Frank et al. (2020) found that VR enhanced the illusory movement 

effect of tendon vibration in healthy participants [127]. Combining augmented haptic 

feedback with visual feedback through VR can enhance the desired outcome measures such 
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as improved motor performance, enhanced immersion or integration, more therapeutic 

benefits such as reducing neuropathic pain, or improving virtual embodiment.  
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2. SPECIFIC AIMS 

I have identified a lack of optimization in the deployment between clinical rehabilitation 

and computerized interfaces, emphasizing improving motor performance. The overarching 

objective of my dissertation is to systematically leverage augmented visual feedback in VR 

to identify features that accelerate positive motor performance. Augmented visual feedback 

guides spatial positioning during motion- and force-based tasks to improve motor 

performance. Each augmented visual feedback has unique combinations of visual feedback 

features, including complexity, body representation, and intermittency. Changes in motor 

performance, including motion and muscle activity consistency, will be the primary 

outcome measure with additional supplementary results as measurable changes in 

neurophysiological signals. Finally, because of a natural connection in motor learning 

between features of complexity and body representation (i.e., simple-abstract and complex-

representative), my focus is on evaluating the two features of complexity and intermittency 

for improving performance during motion- and force-based motor tasks. 

AIM 1: Investigate the effects of specific features (complexity and intermittency) 

in augmented visual guidance during training on the performance of a motion-based 

rehabilitation task. I examined combinations of augmented visual feedback with features 

of complexity and intermittency for a motion-based task (two-legged squat) highly 

prevalent in clinical rehabilitation. During training, participants received concurrent visual 

feedback of their segmental (torso, thigh, shank) motions in the sagittal plane. I evaluated 

the effects of visual feedback features provided during training based on performance 

improvements found immediately after training (i.e., short-term retention). Greater 
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feedback complexity required participants to process more visual information (i.e., 

feedback about additional segments). I investigated intermittency through augmented 

visual feedback provided continuously or periodically based on bandwidth thresholds (i.e., 

below a specified threshold).  

AIM 2: Investigate the effects of specific features (complexity and intermittency) 

in augmented visual guidance during training on the performance of a force-based 

rehabilitation task. Our lab created a novel computerized (virtual reality) platform for 

rehabilitating upper-extremity muscle function to pursue this aim. The platform utilized a 

position-adjustable brace to provide gravity support and facilitate isometric training at 

varied muscle lengths for persons with severe motor impairment (e.g., spinal cord injury). 

Participants exerted muscular efforts within the brace to generate patterns of muscular 

activity classified as myoelectric commands for controlling virtual avatars (e.g., robot arm 

performing reach-to-touch tasks). The task was inherently force-based since the brace 

provided resistance to motion which served to amplify myoelectric signals. These muscle-

based signals subsequently drove a virtual robot arm performing reach-to-touch tasks, from 

which to train muscle strength and coordination. Augmented visual feedback was in the 

form of a semi-transparent guide avatar that indicated the optimal (shortest) path lengths 

to reach targets. Variations in complexity and intermittency were applied during training. 

We hypothesized that feedback complexity would improve post-training 

performance for both Aims if guidance includes body-level representations (i.e., complex-

representative feedback). We also hypothesized that bandwidth feedback would improve 
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post-training performance by reducing the reliance on the augmented feedback to promote 

intrinsic mechanisms for either motion- or force-based motor tasks.  
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3. PRIMARY METHODOLOGIES 

Electromyography (EMG) records electrical activity in muscles during force-generating 

contractions. EMG can be collected in real-time during motor rehabilitation to determine 

the workload of individual muscles. Sensors placed on the muscle mid-belly, in alignment 

with the muscle fibers, measure the voltage difference from two different skin surface 

contact points. The frequency of action potentials traveling across multiple muscle motor 

units changes the time-varying amplitude of the raw EMG signal captured. Each motor unit 

consists of a single motor neuron and all muscle fibers it innervates. EMG recordings are 

highly susceptible to variance (noise) in signal strength due to cross-talk across the muscle 

structure, sensitivity to insecure electrode placement, and movement artifacts. Other major 

factors include muscle size and the amount of subcutaneous tissue under the skin surface. 

EMG signals are normalized across participants based upon recordings taken during 

maximum voluntary isometric contractions (MVICs). MVICs are individual trials with 

specific exercises for different muscles to extract a 100% EMG reading. Sensor locations 

and MVIC protocols are described in the ABCs of EMG [128].  

The following are steps for filtering EMG data to determine individual bursts used 

for controlling a myoelectric device (Figure 6): 

1. The raw signal is the difference in voltage across two electrodes.   

2. Rectification takes the absolute value of the signal, making all values positive.  

3. EMG must be sampled at least twice the highest frequency of interest to avoid signal 

aliasing, typically at least 1000 Hz. Applying a band-pass filter, around 10-500 Hz, 

removes baseline drift associated with movement artifact or user perspiration and 
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preserves only the expected range of firing frequencies from the muscle. A notch filter 

at 60 Hz mitigates noise from power sources. 

4. Some smoothing of the EMG signal occurs with the low-pass effects of the bandpass 

filter. Additional smoothing filters (root mean square, moving average) produce signals 

appropriate for simple on/off timings of bursts of muscle activity or create a robust (i.e., 

indicates clear intent and amplitude of effort) command signal for device operation. 

Electroencephalography (EEG) measures brain activity through sensors attached 

to a scalp cap and placed on the participant's head, typically with electrode gel to reduce 

impedance. EEG offline measured cognitive loading, specifically the alpha- (α) and beta- 

 

Figure 6: Sequential processing steps of tibialis anterior EMG activity during a single 

repetition of the two-legged squat exercise over a 4-second period. The raw EMG is the data 

collected directly from the EMG sensor. The rectified EMG is the absolute value of the raw 

EMG data. The root mean squared (RMS) and moving average (MovAvg) filters smooth the 

curve of data for easier analysis and integration to myoelectric devices. 
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(β) band power in the primary motor and sensory cortexes. Changes in alpha and beta band 

power may indicate changes to potential motor learning [62] and the participant's ability to 

focus on external objects during VR rehabilitation [129]. A greater external focus of 

attention during rehabilitation helps to improve motor learning compared to an internal 

point of focus [3]. EEG data did not control elements of the VR environment. However, 

brain-computer interfaces show promising results for neurorehabilitation [4]. EEG can be 

utilized in brain-computer interfaces to introduce an element of user-control for increasing 

neuroplasticity [130].  

Motion capture is the process of recording the movements of people and objects. 

Retroreflective markers are used in conjunction with infrared cameras that emit and receive 

light for tracking marker position. Markers are placed on anatomical landmarks to recreate 

marker-based skeletons preprogrammed into the motion capture software. Additionally, 

markers can be placed on foam boards to create rigid bodies for real-time streaming of 

body segments. Motion capture is used in real-world applications such as movies and video 

games. Motion capture helps train correct spatial positioning during motion-based tasks. 

Participant kinematic data can also be used for computational modeling to analyze internal 

body mechanics. 

Machine learning is a computational intelligence technique that predicts outputs, 

such as future movement states, based on a pattern of inputs, such as EMG signals 

indicating real-time user intent [131]. During training with an assistive myoelectric device, 

users learn to produce machine-predictable muscle activation patterns and develop long-

term retention for daily use [31]. Machine learning algorithms are evaluated by 
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classification accuracy, accurately predicting desired outputs from new, untrained input 

data, and resulting performance during functional tasks [132]–[134]. Classical approaches 

for EMG-controlled devices use the following machine learning algorithms: support vector 

machine (SVM), linear discriminant analysis (LDA), or artificial neural network (ANN) 

[135], [136]. Support vector machines are supervised learning models that identify a unique 

solution using linear or non-linear functions. An optimal separation hyperplane is identified 

that aims to separate the classes by the maximum distance. LDAs can be used for real-time 

applications, although they are more effective for off-line analyzes due to their fast 

computational times. LDAs work by utilizing the entire data set and calculating the means 

between classes to reduce the dimensionality by a linear function. For real-time 

applications using EMG controllers, SVM has proven more effective compared to LDA 

[137]–[139], especially for dynamic tasks [140]. An artificial neural network is a multilayer 

intelligence system for predicting outputs from inputs based on a series of linear 

transformations (multiplications, additions) before applying a non-linear transfer function 

(e.g., step function). Weights and biases are parameter values for the multiplication and 

addition operations applied to individual input signals before summation at a network node. 

This architecture is analogous to multiple synaptic inputs to a particular neuron. During the 

training of any machine-learning algorithm, parameter values adapt to better match the 

algorithm outputs to actual outputs observed from an experiment. If properly trained, the 

algorithm should effectively predict outputs based on new inputs on which it was not 

previously trained. 
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Feature extractions are digital signal processing methods to identify and extract 

features for further analysis or a more accurate representation of the signal for machine 

learning processes [20]. Beyond filtering a signal, such as applying a notch filter to EMG 

data to remove noise from the power supply, feature extraction methods can help 

restructure data in a format more easily separated into distinct classes during classification. 

Feature extraction methods are either time-domain, frequency-domain, or time-frequency-

domain. Time-domain features such as root mean square or moving average filters (Figure 

6) are commonly used in real-time EMG applications to help smooth out the raw data for 

easier interpretation. Frequency-domain feature extractions are used for offline analyzes of 

EMG data. Examples include calculating the mean or median frequency changes of EMG 

signals to measure muscle fatigue. Comparatively, there are much fewer time-frequency-

domain features than time-domain or frequency-domain. Although a major problem with 

the time-frequency domain is the high dimensionality of data sets, the results suggest 

possible improvement over time-domain features for complex EMG-control set-ups [20]. 

Reducing the dimensionality of the data set, such as through an LDA, also helps to convert 

complex data sets into fewer dimensions for easier computational requirements and allows 

for simpler classification models. Another example of reducing dimensionality is principal 

component analysis, which identifies trends in the data set [141]. The objective is to 

interpret the original data set, with high dimensions, as a new data set with fewer signals 

or dimensions that still represent most of the original data trends.  
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4. AIM 1: MOTION-BASED TASK 

4.1.  Introduction 

The two-legged squat is a physical rehabilitation exercise clinically correlated to the sit-to-

stand movement [142]. The squat exercise is commonly prescribed following 

neuromuscular or orthopedic trauma [143]–[145]. The motion-based task was a desirable 

platform for this research about augmented visual feedback because it is a multi-joint 

movement with a single modulation variable, squat depth. Squat technique, such as squat 

depth, highly influences muscle activations [146]–[148] and can be regulated through 

visual feedback [72], [149], [150]. Concurrent visual feedback can display squat depth 

[71], reduce hip and knee internal rotation [72], and increase movement symmetry during 

sit-to-stand [70].  

This study evaluated the effects of various features of visual feedback, complexity, 

body representation, and intermittency for training motion and muscle activity consistency. 

Six unique concurrent visual feedback modes guided the thigh angle's real-time spatial 

positioning, and in some feedback modes, additionally the shank and torso segments. Four 

unique combinations of complexity and body representation were designed for continuous 

feedback (simple-abstract, simple-representative, complex-abstract, complex-

representative). Only two bandwidth visual feedback modes were designed to evaluate the 

natural connections between simple-abstract and complex-representative. The objective 

was to identify differences in training and short-term retention performance, evaluated in 

retention trials performed immediately following training of each visual feedback mode. 
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4.2.  Subject Recruitment 

Eighteen neurotypical participants signed an informed consent approved by the local 

Institutional Review Board and were recruited from a University campus through printed 

flyers and word-of-mouth (Twelve Males: 179 ± 5.0 cm in height, 163 ± 17.5 lbs in weight, 

20.4 ± 0.9 years in age. Six Females: 166 ± 5.1 cm in height, 136 ± 16.7 lbs in weight, 19.7 

± 1.1 years in age). Varsity athletes were not recruited due to their experience with the 

squat exercise. All subjects were considered non-athletes or played a club sport and 

reported minimal to no weekly exercise with the squat maneuver. Individuals were 

excluded from this experiment if they reported the following: 1. Previous surgery to any 

lower extremity or of the spine/neck. 2. Chronic pain of any lower extremity or the 

back/neck within the last three months. 3. A musculoskeletal or neurological disease 

affecting normal gait function. 4. Sub-normal hearing or vision that is not correctable. 5. 

Any cardiovascular issues that make squat exercises difficult. 6. Inability to regularly squat 

to the maximum squat depth of 70 degrees. 

4.3.  Study Design 

Each participant completed a single training session that incorporated two phases for the 

six augmented visual feedback modes, a training phase immediately followed by a short-

term retention phase. During the training phase, ten trials of concurrent visual feedback 

guided thigh angle position at a unique target depth for the squat exercise. Concurrent 

visual feedback guided the motion of a 4-second squat cycle, which started and stopped at 

the erect standing position. The target movement trajectory for each body segment, shank, 

thigh, and torso, were symmetric sinusoids, representing angular positions, with the 
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maximum squat depth at 2 seconds. Participants were instructed to minimize spatial 

positioning error to all visual targets presented during training trials. Immediately 

following the training phase, a retention phase began of ten retention trials without visual 

feedback support. Participants independently reproduced the movements to measure the 

training effects on short-term retention. The primary outcomes measures for the effects of 

visual feedback were the ability to increase accuracy (mean) and consistency (standard 

deviation) of motion and muscle activity performance across each phase. 

4.4.  Experimental Protocol 

Upon entry, participants first self-selected the positions of both feet for subsequent 

squatting trials and tape outlined each foot position for consistent replacement of the feet. 

Next, participants were encouraged to stretch and warm up before EMG sensors and 

motion capture markers were attached. Before completing any squat trials, MVICs were 

collected for all muscle groups. A television was positioned five feet in front of the 

participant and placed approximately eye-level at an erect stance. Participants completed 

twenty trials for each augmented visual feedback mode consisting of a single squat 

repetition, a block of ten training trials with concurrent visual feedback followed by ten 

short-term retention trials (Figure 7). A 2-second countdown clock preceded the 

participants completing the 4-second squat movement for each training trial. Participants 

had a 6-second window to complete the squat at their discretion after a visual ‘start’ cue 

for each retention trial. There was a 4-second break after each training and retention trial. 

A 5-minute break separated each visual feedback mode to minimize fatigue and mitigate 
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any overall learning effect across the session. The order of visual feedback modes was 

randomized for each participant. 

  

Experimental protocol and trial blocking for the two-legged squat task 

 

Figure 7: Experimental set-up. TOP) Retroreflective markers were used for motion 

capture analysis, electromyography sensors and force sensitive resistors measured 

muscle activity and center of pressure, respectively. BOTTOM-A) Participant and 

target movements were presented in real-time for adjusting spatial positioning. 

BOTTOM-B) For each visual feedback mode, participants completed ten training 

trials with visual feedback immediately followed by ten retention trials. 
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4.5.  Visual Feedback Modes 

I developed six visual feedback modes with combinations of visual feedback complexity, 

body representation, and intermittency. The six visual feedback modes are: 1) Continuous-

Complex-Representative, 2) Continuous-Complex-Abstract, 3) Continuous-Simple-

Representative, 4) Continuous-Simple-Abstract, 5) Bandwidth-Complex-Representative, 

and 6) Bandwidth-Simple-Abstract. Continuous modes constantly displayed both the 

participants' position and the target position (Figure 8). The transparency or color of these 

visual cues never changed. Both the participant and target position visual cues gradually 

changed transparency during bandwidth modes based upon error to the target trajectory 

(Figure 9). The threshold for the feedback to begin appearing was set as +/- 5% of the 

maximum segment angle. Only two modes were presented with bandwidth feedback, 

complex-representative and simple-abstract, as these combinations are naturally coupled 

[6]. Simple and complex modes differed by the number of visual cues displayed. The cues 

represented body segment angles and were all independently controlled. Only the 

participant and target thigh angle positions were displayed during simple modes. The thigh 

position is most indicative of squat depth, and squat depth was the most influential 

parameter for altering muscle activity and internal joint and muscle forces. Complex modes 

presented three different participant-controlled variables and three target trajectories, the 

shank, thigh, and torso segments. Due to the squat being a closed-chain task, presenting 

real-time information on the shank and torso segments may benefit full-body movement 

control. Lastly, abstract modes of visual feedback presented sinusoidal targets with the 

participant trajectory traveling across the screen from left to right. The representative 
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modes displayed 2D line segments representing body segments connected at presumed 

joint locations in the sagittal plane. The participant followed the feedback as it squatted 

down and up to return to a standing position.  

 Due to each participant completing a single training session with all six visual 

feedback modes, the squat depths for each visual feedback mode were varied. The 

maximum squat depth represented as the maximum thigh angle were as follows: 1) 50° - 

Continuous-Simple-Representative, 2) 54° - Continuous-Simple-Abstract, 3) 58° - 

Continuous-Complex-Abstract, 4) 62° - Bandwidth-Simple-Abstract, 5) 66° - Bandwidth-

Complex-Representative, and 6) 70° - Continuous-Complex-Representative. Varying the 

 

Figure 8: During each of the four continuous feedback modes, participant and target 

positioned were constantly displayed throughout the entire trial. Differences amongst 

feedback modes were based upon features of complexity and body representation. 
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squat depth helped reduce the reliance on previous experience and forced the participant to 

adopt new movement strategies for each visual feedback mode. Before training trials for 

each visual feedback mode, the participant completed five practice trials where they 

attempted to squat to the new target depth. The practice trials' participant-specific average 

shank and torso values guided the participants during subsequent complex feedback 

training trials. 

4.6.  Measurement of Physiological Signals 

During all experimental phases, wireless electromyography (EMG) sensors (Trigno 

Wireless EMG System, Delsys, Natick, MA, USA) were used to record muscle activity 

 

Figure 9: For the two bandwidth visual feedback modes, participant and target 

position gradually disappeared and reappeared based upon user error to the target 

trajectory. Bandwidth thresholds were set at +/- 5% for each individual body segment.  
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sampled at 1925.9 Hz. Sensors were placed bilaterally on seven muscle groups highly 

implicated with the squat exercise: tibialis anterior (ankle dorsi-flexor), gastrocnemius 

lateralis (ankle plantar-flexor, knee flexor), rectus femoris (hip flexor, knee extensor), 

vastus lateralis (knee extensor), biceps femoris (knee flexor), gluteus maximus (hip 

extensor/abductor), and erector spinae (trunk extensor). Each EMG sensor was placed on 

the mid-belly of the muscle aligned with the muscle fibers. MVICs were collected at the 

beginning of the experimental protocol before any squats were performed and were used 

to normalize EMG measurements across participants. The standing center of pressure was 

estimated using force-sensitive resistors from the same wireless EMG system. Four 

individual sensors were taped to the ground where each participant's feet were marked and 

coincided with specific foot pressure points (heel, big toe, 1st metatarsal, 5th metatarsal).  

4.7.  Motion Capture Analysis 

Nine wide-angle infrared cameras (Prime 17W by Optitrack®, NaturalPoint Inc., Corvalis, 

OR, USA) captured the 3D motion of the participant's spatial position. Marker position 

data were streamed in real-time using motion capture software (Motive by Optitrack®) and 

processed at 30 frames per second in MATLAB® (Mathworks Inc., Natick, MA, USA) 

using a desktop computer (Dell Intel® Xeon® CPU E5-1660 v4 @ 3.20 GHz) for display 

on a big-screen television (25.8” H x 44.5” W, TCL Model:50FS3800). Spatial positioning 

of the shank, thigh, and torso segments streamed in real-time as marker clusters composed 

of foam boards and three non-collinear retroreflective markers. Two shank and thigh foam 

boards were taped on the outside of each leg. The shank boards were equally between the 

medial malleolus and the middle of the knee joint center of rotation. The thigh boards were 
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equally between the lateral epicondyle of the knee and the greater trochanter at the hip. A 

single torso foam board was centered between the shoulder blades. Changes in the 

orientation of each marker cluster were to a global reference frame. The initial setpoint 

(zero angles) for orientation coincided with the standing position of each participant.  

4.8.  Data Analysis 

All motion and EMG data were processed and analyzed using the Statistics Toolbox within 

MATLAB®. Motion and EMG performances were the mean (accuracy) and standard 

deviation (consistency) relative differences across all six visual feedback modes. Motion 

performance was the accuracy (minimizing error) and consistency (minimizing standard 

deviation in error) of the participants' performance relative to the target trajectory and 

depth. All motion data were normalized to a target depth of 60° to remove depth as a factor 

and allow direct comparisons across visual feedback modes. Participant error to the target 

trajectory was multiplied by 60 and then divided by the target depth for that feedback mode. 

EMG performance was the changes in mean EMG magnitude during individual squat 

bursts measured collectively across all fourteen muscles. Separate squats bursts were when 

EMG exceeded or fell below 10% of the MVIC. EMG data were rectified and filtered 

through a band-pass Butterworth filter (4-500 Hz, 3rd order).  

 The primary factor considered was the six visual feedback modes, and although 

three features of visual feedback were evaluated, all six modes were independently 

assessed. A one-sample Kolmogorov Smirnov test determined that performance data was 

not normally distributed, and therefore nonparametric statistical tests were required. A 

Kruskal Wallis one-way analysis of variance (ANOVA) made comparisons across all 
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visual feedback modes, and a multiple comparison test, with Bonferroni correction, was 

used for individual comparisons. A Mann Whitney U test paired sample comparisons 

between each feedback mode's training and short-term retention blocks.  

4.9.  Results 

In this study, I evaluated the effects of various features of visual feedback for improving 

motion and muscle activity accuracy (mean of error) and consistency (standard deviation 

of error). The primary features of interest were complexity and intermittency. Significant 

differences were observed between features of complexity and intermittency. Significant 

differences were also observed across individual visual feedback modes.  

4.9.1.   Motion Performance - Target Trajectory 

The primary performance metric for each visual feedback mode was motion performance 

evaluated as participant error to the target trajectory (Figure 10, Tables 1 and 2). An 

ANOVA test indicated a significant difference across all visual feedback modes for both 

accuracy and consistency of the thigh angle to the target trajectory. Significant differences 

between visual feedback modes were observed during training. All visual feedback modes 

except bandwidth-simple-abstract exhibited significantly worse accuracy during retention 

than training.  

Continuous-complex-abstract was the worst accuracy and consistency to the target 

trajectory of all visual feedback modes. Continuous-complex-abstract had significantly 

worse accuracy (p<0.01) and consistency (p<0.05) to the target trajectory during training 

trials compared to the other three continuous feedback modes. Continuous-complex-

representative exhibited the largest performance difference in consistency to the target 
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trajectory compared to continuous-complex-abstract (p=0.0001). Between matching 

continuous and bandwidth feedback for simple-abstract and complex-representative 

modes, continuous feedback resulted in significantly higher accuracy (p<0.05) and 

consistency (p<0.05) during training trials. Unique to the comparison between continuous 

and bandwidth modes was evaluating potential learning as an outcome measure, 

represented by the difference between retention and training performance. Both bandwidth 

feedback modes exhibited a positive potential learning trend for consistency to the target 

trajectory and were significantly better than continuous-simple-abstract (p<0.01). 
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Motion Performance to the Target Trajectory from Training to Retention 

 

Figure 10: Motion performance was measured as the accuracy (mean error) and 

consistency (standard deviation of error) to the target trajectory. 
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Table 1: Motion performance results of participant thigh angle  

for accuracy to the target trajectory  
Table 1A: Mean value of all four visual feedback (VF) modes for  

accuracy to the target trajectory (degrees, mean +/- 1 standard deviation) 

Block: 

Visual Feedback Modes 

CSA CSR CCA CCR BSA BCR 

Training 4.0±1.0 3.9±0.8 5.6±1.9 4.0±1.1 5.1±1.3 5.2±1.3 

Retention 7.4±2.3 7.0±2.2 8.0±3.1 6.8±2.6 6.4±2.4 7.4±2.9 

Potential Learning 3.5±1.3 3.1±1.4 2.4±1.2 2.8±1.4 1.2±1.1 2.2±1.6 

Table 1B: Post hoc comparisons, p-value,  

between visual feedback modes during training 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 0.0125 1.0 0.0935 0.0550 

CSR x x 0.0037 1.0 0.0332 0.0186 

CCA x x x 0.0068 1.0 1.0 

CCR x x x x 0.0560 0.0321 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 1C: Post hoc comparisons, p-value,  

between visual feedback modes during retention 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 1.0 1.0 1.0 1.0 

CSR x x 1.0 1.0 1.0 1.0 

CCA x x x 1.0 0.5919 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 1D: Post hoc comparisons, p-value,  

between visual feedback modes for potential learning 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 1.0 1.0 0.2460 1.0 

CSR x x 1.0 1.0 0.4139 1.0 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 1E: Mann Whitney U test, p-value,  

for each visual feedback mode between training and retention  

 CSA CSR CCA CCR BSA BCR 

 1.176E-05 7.575E-06 0.0051 1.210E-04 0.0791 0.0155 

Note: Visual Feedback Modes – CSA (continuous-simple-abstract) – CSR (continuous-simple-

representative) – CCA (continuous-complex-abstract) – CCR (continuous-complex-

representative) – BSA (bandwidth-simple-abstract) – BCR (bandwidth-simple-representative) 

Note 2: Significant P-values (p<0.05) bolded 

 



54 
 

 

 

Table 2: Motion performance results of participant thigh angle  

for consistency to the target trajectory 

Table 2A: Mean value of all four visual feedback (VF) modes for  

consistency to the target trajectory (degrees, mean +/- 1 standard deviation) 

Block: 

Visual Feedback Modes 

CSA CSR CCA CCR BSA BCR 

Training 2.5±0.5 2.7±0.8 3.4±0.8 2.3±0.4 3.5±1.2 3.3±0.7 

Retention 3.8±1.3 3.6±0.9 3.6±1.4 3.0±1.0 3.1±0.7 3.2±1.2 

Potential Learning 1.3±0.8 0.9±0.1 0.3±0.6 0.7±0.6 -0.4±0.4 -0.1±0.5 

Table 2B: Post hoc comparisons, p-value,  

between visual feedback modes during training 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 0.0440 1.0 0.0396 0.0211 

CSR x x 0.0808 1.0 0.0732 0.0403 

CCA x x x 0.0008 1.0 1.0 

CCR x x x x 0.0007 0.0003 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 2C: Post hoc comparisons, p-value,  

between visual feedback modes during retention 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 1.0 0.3413 1.0 0.8621 

CSR x x 1.0 0.3813 1.0 0.9494 

CCA x x x 0.6812 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 2D: Post hoc comparisons, p-value,  

between visual feedback modes for potential learning 

 CSA CSR CCA CCR BSA BCR 

CSA x  1.0 0.4929 1.0 0.0135 0.0236 

CSR x x 0.9608 1.0 0.0357 0.0599 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 0.3919 0.5843 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 2E: Mann Whitney U test, p-value,  

for each visual feedback mode between training and retention  

 CSA CSR CCA CCR BSA BCR 

 7.530E-04 0.0018 0.6464 0.0038 0.3506 0.1249 

Note: Visual Feedback Modes – CSA (continuous-simple-abstract) – CSR (continuous-simple-

representative) – CCA (continuous-complex-abstract) – CCR (continuous-complex-

representative) – BSA (bandwidth-simple-abstract) – BCR (bandwidth-simple-representative) 

Note 2: Significant P-values (p<0.05) bolded 
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4.9.2.   Motion Performance - Target Depth 

Significant differences were found between the participants’ maximum and target depths 

(Figure 11, Tables 3 and 4). The participant’s depth was the maximum depth over the 

entire trajectory evaluated for accuracy (mean of error) and consistency (standard deviation 

of error) to the target depth. A significant difference was observed in potential learning 

accuracy to the target depth. Significant differences were observed for individual feedback 

modes between training and retention.  

Continuous-simple-abstract exhibited significantly better accuracy (p=3.29E-04) 

and consistency (p=0.02) during training than during retention. Continuous-simple-

representative also showed significantly better accuracy (p=0.01) during training than 

retention. Additionally, for consistency to the target depth, the observable trends were that 

both continuous simple feedback modes decreased consistency. In contrast, both 

continuous complex and bandwidth feedback modes exhibited increased consistency from 

training to retention. Bandwidth-complex-representative was the only visual feedback 

mode with positive potential learning accuracy to the target depth, presented as higher 

performance during retention than during training, and was significantly greater than 

continuous-simple-abstract. Although no significant differences were found, both 

bandwidth visual feedback modes exhibited a positive potential learning effect for 

consistency to the target depth. 
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Motion Performance to the Target Depth from Training to Retention 

 

Figure 11: Motion performance was measured as the accuracy (mean of error) and 

consistency (standard deviation of error) of the participant maximum depth to the 

target depth. 
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Table 3: Motion performance results of participant thigh angle  

for accuracy to the target depth 

Table 3A: Mean value of all four visual feedback (VF) modes for  

accuracy to the target depth (degrees, mean +/- 1 standard deviation) 

Block: 

Visual Feedback Modes 

CSA CSR CCA CCR BSA BCR 

Training 2.6±1.3 3.5±1.9 3.5±1.5 3.3±1.9 3.2±1.0 4.1±2.1 

Retention 6.9±4.0 6.5±4.1 5.6±3.8 4.5±2.3 4.8±4.3 3.8±2.1 

Potential Learning 4.3±2.6 3.1±2.2 2.1±2.8 1.2±0.4 1.6±3.2 -0.3±0.03 

Table 3B: Post hoc comparisons, p-value,  

between visual feedback modes during training 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 0.8833 1.0 1.0 0.2424 

CSR x x 1.0 1.0 1.0 1.0 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 3C: Post hoc comparisons, p-value,  

between visual feedback modes during retention 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 1.0 1.0 0.4799 0.1803 

CSR x x 1.0 1.0 1.0 0.4673 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 3D: Post hoc comparisons, p-value,  

between visual feedback modes for potential learning 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 1.0 0.2607 0.2607 0.0045 

CSR x x 1.0 1.0 1.0 0.0982 

CCA x x x 1.0 1.0 0.93381 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 3E: Mann Whitney U test, p-value,  

for each visual feedback mode between training and retention  

 CSA CSR CCA CCR BSA BCR 

 3.294E-04 0.0119 0.2114 0.0738 0.8371 0.4765 

Note: Visual Feedback Modes – CSA (continuous-simple-abstract) – CSR (continuous-simple-

representative) – CCA (continuous-complex-abstract) – CCR (continuous-complex-

representative) – BSA (bandwidth-simple-abstract) – BCR (bandwidth-simple-representative) 

Note 2: Significant P-values (p<0.05) bolded 
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Table 4: Motion performance results of participant thigh angle  

for consistency to the target depth 

Table 4A: Mean value of all four visual feedback (VF) modes for  

consistency to the target depth (degrees, mean +/- 1 standard deviation) 

Block: 

Visual Feedback Modes 

CSA CSR CCA CCR BSA BCR 

Training 1.5±0.5 2.0±1.2 2.2±1.0 1.8±0.7 1.8±0.7 1.9±0.9 

Retention 2.2±1.0 2.4±1.4 1.9±0.9 1.7±0.6 1.6±0.8 1.8±0.6 

Potential Learning 0.7±0.4 0.3±0.2 -0.3±0.1 -0.1±0.1 -0.2±0.1 -0.1±0.3 

Table 4B: Post hoc comparisons, p-value,  

between visual feedback modes during training 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 0.2882 1.0 1.0 1.0 

CSR x x 1.0 1.0 1.0 1.0 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 4C: Post hoc comparisons, p-value,  

between visual feedback modes during retention 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 1.0 1.0 0.3919 1.0 

CSR x x 1.0 1.0 0.6812 1.0 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 4D: Post hoc comparisons, p-value,  

between visual feedback modes for potential learning 

 CSA CSR CCA CCR BSA BCR 

CSA x 1.0 0.1803 0.6812 0.1776 0.3973 

CSR x x 1.0 1.0 1.0 1.0 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 4E: Mann Whitney U test, p-value,  

for each visual feedback mode between training and retention  

 CSA CSR CCA CCR BSA BCR 

 0.0200 0.5166 0.4198 0.7880 0.2750 0.7397 

Note: Visual Feedback Modes – CSA (continuous-simple-abstract) – CSR (continuous-simple-

representative) – CCA (continuous-complex-abstract) – CCR (continuous-complex-

representative) – BSA (bandwidth-simple-abstract) – BCR (bandwidth-simple-representative) 

Note 2: Significant P-values (p<0.05) bolded 
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4.9.3.   Electromyography 

Muscle activity performance outcomes were based on the consistency of mean EMG 

magnitude (Figure 12, Table 5). Significant differences were found between the two 

continuous and representative visual feedback modes during training trials. For an average 

EMG magnitude across all muscles, continuous-complex-representative exhibited 

significantly greater consistency (p=0.0215) in EMG activity than continuous-simple-

representative. Additionally, two individual muscles, the rectus femoris (p=0.034) and 

tibialis anterior (p=0.035) exhibited significantly greater consistency during training with 

continuous-complex-representative than continuous-simple-representative.  

  

Regulation of Muscle Activity during Training 

 

Figure 12: Electromyography performance was measured as the regulation of muscle 

activity during training trials. Muscle activity was measured as the mean magnitude 

of all EMG sensors normalized by the mean EMG magnitude. 
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Table 5: Electromyography (EMG) performance  

for magnitude consistency of all muscles  
Table 5A: Mean value comparisons across all four visual feedback (VF) modes  

(%MVIC, mean +/- 1 standard deviation) 

Block: 

Visual Feedback Modes 

CSA CSR CCA CCR BSA BCR 

Training 27.3±4.7 34.3±10.4 29.6±6.2 25.6±4.5 28.7±6.8 32.7±11.9 

Retention 27.2±4.6 30.6±6.1 31.3±11.6 28.4±6.6 29.0±6.5 28.9±4.7 

Table 5B: Post hoc comparisons, p-value,  

between visual feedback modes during training 

 CSA CSR CCA CCR BSA BCR 

CSA x 0.4994 1.0 1.0 1.0 1.0 

CSR x x 1.0 0.0215 1.0 1.0 

CCA x x x 0.4673 1.0 1.0 

CCR x x x x 1.0 0.2093 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 5C: Post hoc comparisons, p-value,  

between visual feedback modes during retention 

 CSA CSR CCA CCR BSA BCR 

CSA x 0.5843 1.0 1.0 1.0 1.0 

CSR x x 1.0 1.0 1.0 1.0 

CCA x x x 1.0 1.0 1.0 

CCR x x x x 1.0 1.0 

BSA x x x x x 1.0 

BCR x x x x x x 

Table 5D: Mann Whitney U test, p-value,  

for each visual feedback mode between training and retention  

 CSA CSR CCA CCR BSA BCR 

 0.8371 0.4964 0.9370 0.1032 0.9118 0.7397 

Note: Visual Feedback Modes – CSA (continuous-simple-abstract) – CSR (continuous-simple-

representative) – CCA (continuous-complex-abstract) – CCR (continuous-complex-

representative) – BSA (bandwidth-simple-abstract) – BCR (bandwidth-simple-representative) 

Note 2: Significant P-values (p<0.05) bolded 
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4.10. Discussion 

This study evaluated the effects of specific features of augmented visual feedback for 

training motion and muscle performance for the two-legged squat exercise. By 

systematically comparing multiple visual feedback modes for the same motor task, this 

research aimed to identify the potential advantages and disadvantages of each feature of 

visual feedback. The objective was to determine the features that optimize motor 

rehabilitation, both in the training and short-term retention phases. Six unique visual 

feedback modes guided real-time spatial positioning of the two-legged squat, primarily 

focused on the participants' thigh body segment angular position. Three visual feedback 

modes, deemed to be complex feedback, also guided the shank and torso body segments 

naturally coupled to the thigh during the closed-chain movement. Significant differences 

across visual feedback modes were found for motion accuracy and consistency, measured 

as participant thigh angle error to the target trajectory and depth. Significant differences 

were also observed for specific modes for potential learning, calculated as the relative 

difference for an individual visual feedback mode between training and retention 

performance. Although three features of visual feedback were evaluated in this study, only 

complexity and intermittency were the primary features of interest, and research has been 

published in two scientific journals [7], [8]. Continuous feedback was more effective 

during training trials at increasing motion accuracy and consistency than bandwidth 

feedback. Continuous-complex-abstract exhibited the worst performance across all visual 

feedback modes, while continuous-complex-representative exhibited the highest relative 
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performance. Although bandwidth feedback demonstrated low training performance, it 

indicated higher potential learning than continuous feedback. 

The role of simple visual feedback in optimizing motion-based tasks is uncertain 

based on the results of this study. While the two-legged squat involves multiple segments, 

it is essentially a modulation of the single variable, squat depth. Thigh angle was the 

primary surrogate for squat depth, which is consistent with other squat studies [71], [151], 

[152]. My results indicated increases in motion consistency to the target depth for both 

continuous-complex modes and reductions for both continuous-simple modes. This 

observation suggests that complex feedback for matching a singular movement feature, 

such as squat depth, is overtly challenging during training. Yet concurrent complex 

feedback may still generate better development of intrinsic mechanisms relied upon during 

retention [89]. Both continuous-simple-abstract and continuous-simple-representative had 

similar motion performance to the target trajectory and maximum depth. Simple feedback 

is advantageous over complex feedback in accuracy and consistency to a target trajectory 

if displaying abstract feedback. This study demonstrates that visual feedback of additional 

DOF still benefits the primary performance variable if provided with body-discernible 

features. 

For the naturally coupled visual feedback modes simple-abstract and complex-

representative, the contrasting differences in potential learning support the findings of 

Soderstrom and Bjork [153] in that training results cannot infer retention results, and vice 

versa. Both continuous simple-abstract and complex-representative feedback modes 

presented similar performance during training, but only continuous-complex-
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representative was able to maintain performance during retention trials. Continuous-

simple-abstract showed the lowest learning potential across all four motion performance 

metrics. Constant presentation of information without the additional context of other body 

segments may have precipitated over-reliance on a singular movement feature. Complex-

representative modes may have mitigated over-reliance on continuous feedback by 

presenting additional body segment positions that allowed participants to interpret the 

feedback against their squat movements more holistically across their entire body. 

Among the two continuous-complex visual feedback modes, continuous-complex-

representative produced better accuracy and consistency than continuous-complex-

abstract. This finding strongly suggests the importance of complex feedback and body 

representation during multi-segmented motion-based tasks. For some motor tasks, complex 

feedback can be overwhelming such that it degrades movement performance [82]. 

Complex feedback is appropriate if the additional feedback information is inherently 

important to a specific task, then performance is expected to improve [82]. Our study 

suggests that visual feedback more ‘representative’ of the body may further facilitate 

performance. Our streamlined continuous-complex-representative mode demonstrated 

notable advantages over continuous-complex-abstract, providing feedback cues as 

sinusoids. The visual gains of the sinusoids were normalized while representing additional 

body segments (torso, shank) moving synergistically with the thigh. These segments are 

functionally coupled due to the legs forming a closed chain [154] and the balance 

requirement of maintaining the body center of mass over the base of support [155]. These 

constraints require an inherent functional synergy across these segments. Despite this 
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synergy, the additional feedback streams for the torso and shank segments only generate 

better performance in tracking the thigh segment if visual feedback represents their position 

as body segments rather than abstract sinusoids. Embodiment in rehabilitation is the first-

person perspective of one’s body during environmental interaction [156]. This study 

portrayed representative modes with body-discernible features as a stick figure of body 

position in the sagittal plane, resulting in a greater feeling of embodiment. The 

representative feedback modes still lacked embodiment features such as realistic body 

representation [74], [157], first-person perspective [52], [85], or direct mirroring [158], 

[159].  

Our results indicate that continuous feedback is beneficial in increasing training 

performance, while bandwidth feedback proved to be more advantageous for retention. 

During movement training, providing a constant and uninterrupted stream of angular 

position information during continuous feedback resulted in clearly higher movement 

accuracy and consistency than intermittently removing position information. However, this 

may have degraded learning as participants were hyper-focused on the feedback for 

movement support. Bandwidth feedback was more beneficial for learning by reducing the 

reliance on augmented visual feedback during training. However, in this study, which we 

constrained in scope to observe short-term retention only, no significant differences were 

between visual feedback modes for retention. Bandwidth feedback modes showed higher 

performance improvement for the relative change from training to short-term retention, 

called “potential learning.” These improvements in bandwidth feedback modes were 

significant compared to continuous-simple-abstract in potential learning for consistency to 
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the target trajectory and accuracy to the target depth. Both bandwidth feedback modes 

showed a positive potential learning effect for consistency to both the target trajectory and 

target depth. This positive trend for movement consistency with bandwidth feedback could 

indicate that, despite relatively more challenges during training, bandwidth feedback can 

produce more significant relative improvements in short-term and presumably long-term 

learning of rehabilitative movements. Evidence suggests positive links in feedback-based 

learning between the generation of immediate and longer-term positive improvements 

[160], [161]. Higher potential learning with bandwidth feedback may further support the 

possibility of developing intrinsic mechanisms during training necessary for sustained 

long-term learning [82]. Our premise for potential learning is that performance during 

training provides the baseline to compare how much training benefit is retained. We posit 

that this effect may be continually leveraged with future training sessions in which the 

training performance error (baseline) itself may be subsequently reduced [78]. Our study 

demonstrated that complex and representative modes have superior training benefits for a 

motion-based task than abstract modes across both continuous and bandwidth feedback. 

This finding further suggests the potential benefit of representative features for multi-

segmented movements. Immersive, visual-driven training platforms such as VR are well 

suited to leverage embodiment features for more effective feedback displays to increase 

movement retention. 

Continuous-complex-representative also generated more consistent muscle 

activation patterns relative to continuous-simple-representative. The squat maneuver 

benefits the rehabilitation of the knee following rupture of the anterior cruciate ligament 
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and patellar tendon [22], [63], [162]. During rehabilitation, it is advantageous to regulate 

the activation patterns of muscles surrounding the knee joint, such as the rectus femoris 

and tibialis anterior. The implications for continuous-complex-representative for 

regulating muscle activity also span movement rehabilitation with powered assistive 

devices. During ADLs, powered exoskeletons and prostheses often rely on myoelectric 

interfaces to discern user commands for desired movement execution [163]–[165], where 

more consistent muscle activation patterns are advantageous [132], [133]. 

No significant differences were observed in the changes in the center of pressure 

measured as the magnitude of the forward excursions or the consistency of excursion 

magnitude. Only forward excursions were evaluated since all visual feedback provided 

averages of the left and right sides projected onto the sagittal plane. It appears that varying 

visual feedback did not generate significant differences in the center of pressure. While 

beyond the scope of this study, this result would suggest any significant changes in internal 

mechanics would be due to changes in joint angles [166].    

 There were multiple limitations to our experimental approach, primarily the 

sample size and length of the study. The sample size of only eighteen participants resulted 

in the need for nonparametric statistical testing. There was also a lack of evaluation of long-

term learning or classical retention effects. Motor adaptation should be confirmed over 

numerous weeks, including multiple training sessions and transfer tests more indicative of 

long-term learning. The scope of our investigation was restricted to a single training session 

per participant to assess both training and short-term retention performance. The two-

legged squat movement can also be highly stereotypical for neurotypical participants, so 
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pilot testing indicated it was necessary to change the squat depth for different visual 

feedback modes. Changing the squat depth would ensure the participants' reliance on the 

visual feedback for learning the new movement and would reduce the overall learning 

effect across the training session.  

4.11. Conclusion 

The objective of this study was to investigate how features of augmented visual feedback, 

complexity, body representation, and intermittency may affect motion and muscle activity 

during both training and short-term retention of the same motor task. The objective was to 

identify features that increased the accuracy and consistency of participant thigh angle to a 

target trajectory and the consistency of all EMG activity patterns. This study implies that 

complex-representative and bandwidth feedback may have notable advantages in 

regulating motor performance. Visual feedback that was complex and included body 

representative features outperformed other visual feedback modes that were otherwise 

simpler or more abstract. Continuous feedback outperformed bandwidth feedback during 

training to minimize error to a target trajectory, but the performance was unable to be 

maintained during retention trials. Bandwidth feedback demonstrated more significant 

promise for potential learning from relative improvement in independent performance 

immediately after training with visual feedback.  

Providing continuous visual feedback in complex and body-representative features 

may be desirable in the training performance of a multi-segmented motion-based task. The 

implication that complex-representative feedback is optimal for motion-based tasks and 

can outperform simple and abstract feedback modes may be a valuable directive in VR-
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based rehabilitation. Additionally, introducing features of bandwidth feedback may be 

beneficial in supplementing retention effects for learning independent movement 

strategies. Bandwidth feedback may serve as a bridge between concurrent continuous 

feedback and terminal feedback by gradually increasing reliance on and developing 

intrinsic mechanisms. Additional evaluations of complex-representative and bandwidth 

feedback on long-term motor learning should be pursued. VR is becoming increasingly 

prevalent in physical therapy to enhance augmented visual feedback. VR may effectively 

train motion-based tasks and readily visualize custom body representations with complex-

representative features. Incorporating VR to create person-specific 3-D body 

representations could increase real-time performance and the development of intrinsic 

mechanisms through additional embodiment features.  
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5. AIM 2: FORCE-BASED TASK 

5.1.  Introduction 

After completing the motion-based squat task, my research utilized EMG as the primary 

platform for improving muscle level control. EMG – necessary for myoelectric control – 

is used for commanding assistive devices, such as prosthetics or exoskeletons, and 

monitors muscle activity during physical rehabilitation. VR effectively trains muscle 

activity patterns of myoelectric prostheses, both in real-world devices [32] and those 

simulated in an immersive VR environment [167]. In this study, the experimental platform 

is a VR-based force task. However, the unique property of the rehabilitation platform was 

that force inputs, i.e., participant isometric EMG activity patterns, were mapped to 

movement commands in the virtual space [40]. Acting in a haptic joystick design, 

participants donned a supportive arm brace, where pushing forward in the brace would 

induce the desired muscle contractions to command the virtual device forward. Due to the 

two-legged squat study findings, research focused on employing complex-representative 

and bandwidth feedback modes. Unique to this study, participants also completed a short 

pre-training phase (baseline, no feedback) before training and the post-training (retention) 

trials to further evaluate how each visual feedback mode affects performance and cognitive 

engagement. 

Before the development of VR head-mounted displays, visual feedback was limited 

to external monitors or mirrors to guide spatial positioning. There is a desire to evaluate 

features of visual feedback within immersive VR environments because of the ability to 

create enhanced forms of visual cues unable to be recreated in conventional therapy. An 
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example is representing the target trajectory as a transparent overlay to the user's body 

position, such as a "ghost-arm" during a reaching task to identify the desired path [52]. VR-

based training can increase embodiment through avatars or 3D representations of body 

position [156].  

In this study, we investigated how the complexity and intermittency of augmented 

visual guidance can facilitate improved functional performance of a muscle-based 

(myoelectric command) training task for upper-extremity rehabilitation. We utilize a novel 

computerized platform that incorporates myoelectric control of a virtual robot avatar to 

perform reach-to-touch tasks while the participant receives augmented visual guidance 

during training. The task employs a position-adjustable brace of the upper extremity to 

support users, such as those with spinal cord injury who are challenged to move their limbs 

against gravity [132], [168]. The brace also holds the arm isometrically to support 

resistance strength and coordination training at varied arm positions [169]. Thus, we are 

fundamentally investigating the effects of variations in augmented guidance for the 

performance of a force-based rehabilitation task [170], [171]. Another crucial and novel 

element of our investigation is the examination of concurrent feedback, as previous 

bandwidth investigations have utilized terminal feedback [58], [59]. 

Furthermore, we measure and evaluate user-centered response variables to 

potentially explain an underlying mechanism in how augmented guidance may induce the 

observed performance patterns. Specifically, we assess participant perceptions in agency 

[172] over the command interface. In addition, we measure the physiological stresses that 

are endured at cognitive (electroencephalography measures for loading [173]) and physical 
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(electrodermal activity indicative of body arousal [174]) levels. These physiological 

stresses indicate well-being during training, which may help further identify participant 

tolerance of various visual feedback modes and may be an additional dimension of person-

specific customization of VR-based training. 

5.2.  Subject Recruitment 

Thirteen healthy participants signed an informed consent approved by the local 

Institutional Review Board. They were recruited from a university campus (Seven 

Females: 21.2±2.0 years, 165.1±3.7 cm, 56.5±2.6 kg. Six Males: 22.3±2.1 years, 179.3±5.9 

cm, 77.5±6.4 kg). All participants stated they were right-hand dominant. All participants 

were naïve to both the brace device and muscle-driven command interfaces. Individuals 

were excluded from participating if they reported any of the following: 1. Clinical 

diagnosis of cognitive or neuromuscular impairment. 2. Previous surgery to an upper 

extremity or the spine/neck. 3. Hearing or vision issues not correctable to normal levels. 4. 

Proneness to epileptic seizures due to visual stimuli.  

5.3.  Supportive Brace Apparatus 

A novel computerized platform for isometric training of muscle function has been 

developed for motor rehabilitation of the upper extremity (Figure 13). The first principal 

component of this platform is a position-adjustable brace that isometrically supports the 

upper arm undergoing training. The brace was custom constructed using 3D printing and 

essential hardware components, and it allows the user to assume variable arm 

configurations. Support at varying configurations can enable physical therapists to develop 

training programs that promote muscle strength and coordination at different muscle 
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lengths [175], [176], even for persons with severe motor dysfunction. In cases of severe 

motor disability, the brace provides gravity support to assume different configurations 

while a person can focus training effort on preserved muscles executing the computerized 

task. Fundamentally, the person will exert directional efforts against the brace's padded 

interior (contact-side). Isometric resistance from the brace amplifies the skin-surface EMG 

signals used to drive the motion of virtual avatars [177], [178].  

The brace comprises an arm mount, an adjustable rod, and a secondary mount on 

the table directly in front of the participant. The arm mount component straps twice over 

the upper arm once over the forearm and allows adjusting and locking of the elbow angle. 

The arm mount has cut-outs for EMG sensors on the upper arm and forearm muscle mid-

bellies. An adjustable rod attached to the forearm connects the arm mount to a second 

mount clamped to the table in front of the participant. The adjustable hinges on the mounts 

and rod allow the arm position to be adjusted at elbow and shoulder angles that are 

comfortable and within desired limits. In this study, we searched for arm positions deemed 

comfortable and neutral for each participant within the following angular ranges: shoulder 

ad/abduction (45-75°), shoulder internal rotation (0-45°), and elbow flexion (90-120°). We 

approximately defined neutral as an arm position where participants perceived they could 

produce high forces in the four orthogonal directions (forward, back, left, right) used to 

command the virtual avatar (robot arm). 

While donning the brace, participants completed MVICs for normalizing EMG 

activity by producing maximum force in each of the four orthogonal directions. The 

average distribution across all participants for muscle activity in each orthogonal direction 
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during MVIC trials is represented in Figure 14. Each direction drastically changed the 

distribution of muscle activity. This distribution promotes rehabilitation across multiple 

muscle sites and validates the platform as a suitable interface for commanding a 

myoelectric device through isometric contractions. Each direction presents notable changes 

in the pattern of EMG magnitude across muscle sites that machine learning algorithms 

would easily classify for determining direction intent. The data also represents a platform 

for deciding future brace utilization for clinical populations with more reduced muscle sets. 

Identifying the correlated muscle sets utilized in direction control will help determine the 

ideal inputs for optimizing myoelectric devices. A platform that provides feedback on 

correlated (and uncorrelated) arm muscle activity may also be used to improve unwanted 

co-contraction seen as part of the spasticity syndrome after spinal cord injury.  
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Experimental protocol and trial blocking for the VR force-based task 

 

 

Figure 13. Experimental set-up. TOP) Participant arm placed in supportive brace 

fastened to the table to apply isometric muscular exertions. Worn EMG sensors 

record myoelectric patterns to command the VR robot arm avatar. EEG and EDA 

signals additionally recorded to measure participant cognitive loading and physical 

arousal, respectively. BOTTOM) For each visual feedback mode, participants 

completed pre-training and post-training trials (with no feedback) before and after 

training trials (with visual feedback). Isometric muscle control was used to command 

a virtual device through a variety of reaching tasks while receiving real-time visual 

feedback for making movement corrections to reduce error to the shortest path 

between targets. 
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Figure 14. Four pie charts that indicate the average distribution across all participants 

of electromyography activity magnitude. The muscle activity represents the MVIC 

data collected for each orthogonal direction while donning the supportive brace. 
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5.4.  Measurement of Physiological Signals 

Fourteen wireless electromyography (EMG) sensors (Trigno Wireless EMG System, 

Delsys, Natick, MA, USA) were used to measure real-time muscle activity and serve as 

myoelectric inputs to control the virtual robot. EMG sensors were placed on the mid-belly 

of fourteen individual muscles of the arm and torso: brachioradialis, extensor digitorum, 

biceps brachii, triceps brachii, upper trapezius, middle trapezius, lower trapezius, 

infraspinatus, serratus anterior, latissimus dorsi, pectoralis major, anterior deltoid, lateral 

deltoid, and posterior deltoid. These muscles were identified as primary force-generating 

muscles in upper-extremity movements and targets for physical rehabilitation. All EMG 

data were sampled at 1728 Hz.  

A 64-channel electroencephalography (EEG) scalp-recording cap (g.USBamp, 

g.tec neurotechnology USA, Inc.) measured brain activity during all experiment phases. 

Power spectrum analyses were performed offline to identify mean power in alpha (8-12 

Hz) and beta (13-30 Hz) frequency bands as measures of cognitive loading. Only seven 

participants were available to have EEG measurements taken during all experiment phases. 

All EEG data were sampled at 256 Hz. Electrodermal (EDA) activity was measured as a 

proxy for emotional and physical arousal based on increases in skin conductivity (in 

microsiemen) of the left hand. Changes in galvanic skin response due to moisture were 

measured from electrode readings (Shimmer3 GSR+ sensor, Shimmer, USA) at the index 

and middle fingers. Only four participants were available to have EDA measurements taken 

during all experiment phases. All EDA data were sampled at 51 Hz. All EMG, EEG, and 

EDA data were synchronized offline.   
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5.5.  Survey Measurement for Perception of Control 

Immediately following each visual feedback block, participants completed a survey 

inquiring about their perception of control of the virtual avatar during training. Only ten of 

the eligible participants completed the survey. The survey included a statement and space 

to write a single number between 1 and 100, representing the extent to which they disagree 

(1) or agree (100) with the statement. The statement reflected sense of agency [179] and 

read as: I was in full control of the virtual prosthetic arm during training   

5.6.  Utilizing Support Vector Machines for EMG Classification 

A support vector machine (SVM) [180] was used as the machine learning classifier for 

translating EMG activation patterns (14 muscle inputs) to direction outputs to be used as 

commands for the end-effector of the virtual robot arm. SVMs were trained uniquely for 

each participant. During pilot testing with our platform, we attempted using a single SVM 

to output eight directional commands (four orthogonal, four diagonal). However, the single 

SVM produced challenges in EMG control of multiple degrees of freedom, as is well-cited 

[181], and participants reported poor intuitive control. Thus, we alternatively created an ad 

hoc command architecture using two SVM structures in parallel. One SVM was trained to 

identify forward and backward command directions, and the other was separately trained 

to identify right and left command directions. Training trials with diagonal data were 

included in both classifiers. A manual threshold was specified in series with classifier 

output to denote 'no movement' of the end-effector when average EMG activity across all 

muscles was within 20% of the baseline (i.e., resting periods between target plateaus) EMG 

amplitude, presumably from sensor noise or hyperactivity at rest.  
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The main consequence of this command scheme was that participants primarily 

utilized sequences of diagonal movements (i.e., both SVM classifiers were producing 

command outputs concurrently) to move towards target locations. However, this approach 

was ultimately justified for our platform since participants reported seamless and natural 

control of the robot avatars. This perception may partly explain endpoint stiffness 

regulation as a function of arm posture [182], and diagonal translations may have better 

aligned with user endpoint forces. However, considerations of mapping arm posture to 

endpoint force synergies were beyond the scope of this study and held secondary to finding 

arm postures accommodating user comfort and stated preferences. More sophisticated 

approaches to the command interface may be enacted in future deployments, including 

those that better facilitate robust and concurrent control of multiple degrees of freedom. 

Still, the current scheme provided a sufficiently stable and consistent interface to discern 

performance effects due to variations in visual feedback features, as is the main objective 

of this study.  

For classifier training, each participant would be placed in the brace to perform 

voluntary isometric contractions in specific directions as instructed by the experimenter. 

First, the participant would perform maximum voluntary isometric contractions (MVIC) in 

the four orthogonal directions: forward, back, left, and right. From these trials, we 

identified the average EMG across all muscles signifying 100% MVIC for normalizing 

target force levels during training trials. Second, data to train an SVM were collected in 

sixteen individual trials within the VR environment. In each trial, participants would exert 

effort at one of two force level targets, 20% or 40% MVIC, in one of eight movement 
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directions, the four orthogonal directions, and their corresponding four diagonal directions 

in that same plane. If they reached and exceeded the force target, the virtual end-effector 

would slowly start moving in the intended direction to encourage them to maintain that 

force level. Participants maintained an isometric hold for no longer than 12 seconds at the 

desired force level for each trial. To standardize the classifier inputs during training, data 

were extracted from each trial and resampled from ~20000 down to 10000 sample points 

of EMG activity for each movement direction. Real-time input data to either SVM was 

provided as the root mean square filter with a window of 200 samples for the fourteen 

EMG sensors. 

5.7.  Virtual Reality Task Environment for Training and Testing 

The 3-D VR task environment (Figure 15) was primarily comprised of a robot arm whose 

end-effector moves within the transverse plane (forward-back-right-left) based on SVM 

outputs commanded by the participant's myoelectric patterns. The remainder of the robot-

arm linkage follows the end-effector according to inverse kinematics [183]. The end-

effector moved towards target locations (marked by spheres) for both training and testing 

trials of functional performance. Participants were instructed to pursue targets as quickly 

as possible, and that performance was measured by the shortest pathlength taken between 

targets, i.e., end-effector pathlength. Participants performed reach-to-touch tasks with the 

robot arm either in training trials with augmented visual guidance or during testing trials 

with no added feedback. For training trials, there are five target spheres arranged 

equidistantly (at 0°, 45°, 90°, 135°, and 180°) from the starting position for conducting a 

point-to-point reaching task [184]. A color change of a random target sphere would cue the 
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participant to command the end-effector to reach and contact that target before immediately 

returning to the starting position and pursuing the next target. The five targets were 

arranged randomly for testing trials, and participants could choose the order to contact all 

targets serially. Allowing participants to select the order of pursued targets strategically 

supports the development of motor control [185]. Participants were informed about their 

pathlength during training through a "Pathlength Score" display to facilitate learning with 

knowledge of results [186] and score gamification [187]. Pathlength score was explicitly 

computed as the ratio of the minimum pathlength (straight line distance) between targets 

over the actual pathlength traversed by the end-effector multiplied by 100. For the 

participant, score interpretations were intuitive, whereby the goal was to achieve a score as 

close to 100 as possible.   
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Figure 15. Three-dimensional virtual reality task environment shown for robot arm 

(white) under myoelectric control to make contact between its end-effector and target 

spheres. TOP) During point-to-point “training”, the targets were positioned 

equidistantly from a central initial position as the participant received augmented 

visual guidance in moving to (reach) and from (return) the targets. BOTTOM) During 

“testing”, augmented visual guidance was removed and targets were randomly 

positioned, and participants pursued targets in series and in the sequence order they 

choose.  
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5.8.  Visual Feedback Modes Utilized for Augmented Training Guidance 

Augmented training guidance in this study was presented as visual cues to suggest 

participant deviations from optimal (shortest) pathlengths between initial positions and 

targets. A second 'ghost' (semi-transparent) robot avatar was presented concurrently as a 

guide against the participant-controlled avatar during training. The end-effector position 

for the guide avatar was a projection of the participant-controlled avatar onto the optimal 

pathlength. Four modes of augmented visual feedback were created through concurrent 

variation of complexity (amount of visual information) and intermittency (frequency of 

visual information), with each feature tested at two levels (Figure 16).  

Guidance complexity was specified as either simple, through the display of only the 

end-effector of the guide robot, versus complex, which also displayed the guide robot's arm 

linkage. The arm linkage of the guide robot similarly follows inverse kinematics of its end-

effector and does not inherently provide additional feedback about error. However, my 

previous work [7] suggested that additional visual cues, even if redundant due to 

biomechanical coupling, may facilitate better motor learning if they signified greater body 

representation, e.g., serial sequence of body segments. In this previous study, the 

performance variable of interest was the thigh angle during the squat exercise. A serial 

body linkage improved motor performance by adding additional visual information about 

torso and shank segments. Thus, I seek to investigate if such feedback may positively 

contribute to motor learning despite the fundamental motor task difference of isometric, 

i.e., force-based, avatar control.  
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Guidance intermittency was specified as either continuous, whereby the guide 

avatar is always present, versus bandwidth, whereby augmented guidance was only 

provided if position error exceeded a particular threshold. This study specified the 

threshold as the mean error for a given participant during two practice training as part of 

initial accommodation. When this error is exceeded, a semi-transparent version of the guide 

arm appears and becomes opaquer in proportion to increasing error. The guide arm is fully 

opaque at twice the error magnitude of the threshold value. Pilot experimental sessions for 

this study and our previous work have indicated that modulating transparency of the guide 

arm in proportion to error magnitude ensured that intermittent transitions in feedback are 

not perceived as jarring to participants. The guide arm was presented at 20% transparency 

for continuous feedback modes. Pairing each unique level of one feature to another feature 

resulted in four visual feedback modes: 1) complex-continuous, 2) simple-continuous, 3) 

complex-bandwidth, and 4) simple-bandwidth.  
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Figure 16. Visual Feedback Modes for Augmented Guidance during Training. All 

visual feedback modes project variations of a semi-transparent guide robot arm that 

follows the shortest (straight line) pathlengths between initial positions and active 

targets.  
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5.9.  Experimental Protocol 

Each participant completed a single session that evaluated the effects of all four visual 

feedback modes within four hours. The participant donned the upper-arm brace and had all 

skin-surface physiological (EMG, EEG, EDA) sensors placed upon arrival. Immediately 

after, several accommodation procedures occurred, including 1) brace adjustment for 

comfort and neutrality, 2) participant selection of an avatar end-effector speed (three speed 

choices presented), 3) a couple of minutes gaining experience commanding the virtual 

robot. Before testing each visual feedback mode, a couple of practice trials were conducted 

to determine baseline average performance errors (optimal pathlength deviations) to 

determine bandwidth thresholds. For each of the visual feedback modes, each participant 

underwent a three-block trial sequence: 1) Five testing trials (pre-training), 2) Ten training 

trials (training with augmented visual guidance), 3) Five testing trials (post-training). The 

order of visual feedback modes was randomized for each participant. Each trial was 

separated by 15 seconds, and a 15-minute break separated each three-block sequence for a 

visual feedback mode to mitigate fatigue effects. Participants were further queried 

intermittently throughout the session about how they felt and if they required an additional 

break.  

5.10. Data and Statistical Analysis 

All statistical analyses were performed using the Statistics Toolbox of MATLAB® 

(Mathworks Inc., Natick, MA, USA). All metrics for performance (completion time and 

pathlength score), perception (agency survey), and physiological engagement (alpha- and 

beta-band EEG activity for cognitive loading; EDA for physical arousal) were evaluated 
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for each participant, visual feedback mode, and block of testing or training trials. Analysis 

of central interest in this study was the relative change in performance between post-

training and pre-training trials for each visual feedback mode. We further evaluated the 

change in physiological measures from pre-training to either training or post-training. 

Finally, we observed participants' sense of agency for each visual feedback mode used for 

training. A two-factor Friedman (two-way ANOVA by ranks) test was performed for each 

of these metrics to identify significant differences across factors of complexity and 

intermittency. A paired t-test was the post hoc test for making multiple comparisons across 

visual feedback modes. 

5.11. Results 

 

5.11.1.    Motion Performance - Pathlength Score and Completion Time 

Results for both performance variables (pathlength score, completion time) are reported as 

the mean across participant-level averages within each block of trials. For each participant, 

the performance results during post-training blocks are divided (normalized) from those 

for pre-training to suggest the relative change in performance due to training with a 

particular visual feedback mode. When performing the multi-variate analysis (MANOVA) 

for both performance variables (pathlength, completion time), a significant difference 

(p=1.8 E-08) was observed across the independent variable of visual feedback modes. 

Figure 17 presents the results for pathlength score alone. For the factors of complexity and 

intermittency, the two-way ANOVA indicated a significant difference for pathlength score 

based on complexity but not for intermittency (Table 6). No significant interactions were 

observed between these factors for either performance metric. The normalized pathlength 
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score was significantly higher (p=0.0461) for simple feedback modes compared to complex 

modes. When examining individual feedback modes (Table 7), simple-continuous 

feedback generated better pathlength performance compared to both complex-continuous 

(p=0.0293) and complex-bandwidth (p=0.0449). Furthermore, an improvement in 

pathlength score during post-training compared to pre-training (i.e., normalized value 

greater than 1) was observed for all individual visual feedback modes. Figure 18 presents 

the mean completion times during post-training when normalized by pre-training averages. 

Significant differences in completion time were not observed between pairs of individual 

visual feedback modes.   
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Figure 17. Pathlength score results indicate relative change in performance of 

pathlength minimization after training as score in post-training is divided (normalized) 

by pre-training for each participant.  
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Figure 18. Results indicate relative change in trial completion time performance after 

training as mean time in post-training is divided (normalized) by time in pre-training 

for each participant. 
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  Table 6: Performance results as the relative change from pre-training to post-training  

(Post/Pre ratio per participant) 

Table 6A: Mean performance across visual feedback modes 

Metric: 

Visual Feedback Modes 

CC CB SC SB 

Pathlength Score 1.01±0.05 1.02±0.05 1.06±0.06 1.05±0.05 

Completion Time 0.92±0.05 0.91±0.09 0.90±0.07 0.89±0.06 

Table 6B: Two-way ANOVA results based on factors of complexity and intermittency 

Metric: 

Complexity Intermittency 

Chi-square p-val Chi-square p-val 

Pathlength Score 3.98 0.046 0.02 0.885 

Completion Time 0.82 0.365 0.43 0.514 

Note: Visual Feedback Modes – (CC) Complex-Continuous – (CB) Complex-Bandwidth  

– (SC) Simple-Continuous – (SB) Simple-Bandwidth  

Note 2: Significant P-values (p<0.05) bolded 
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Table 7: Post hoc results comparing performance between pairs of visual feedback modes 

Table 7A: P-values for pathlength score  

 CC CB SC SB 

CC x 0.726 0.029 0.171 

CB x x 0.045 0.097 

SC x x x 0.480 

Table 7B: P-values for completion time  

 CC CB SC SB 

CC x 0.720 0.387 0.176 

CB x x 0.473 0.299 

SC x x x 0.656 

Note: Visual Feedback Modes – (CC) Complex-Continuous – (CB) Complex-Bandwidth  

– (SC) Simple-Continuous – (SB) Simple-Bandwidth  

Note 2: Significant P-values (p<0.05) bolded 
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5.11.2.    Electroencephalography  

Figure 19 presents EEG data for alpha and beta powers measured across all channels, 

observed as relative changes from pre-training to training (Train/Pre ratio) or pre-training 

to post-training (Post/Pre ratio). Significant differences in EEG were observed based on 

intermittency (Table 8) and across individual feedback modes (Table 9). Significant 

differences were observed only for Post/Pre for the alpha band. Continuous feedback 

resulted in significantly higher (p=0.0116) EEG activity than bandwidth (intermittent) 

feedback. No significant interactions were observed between factors of complexity and 

intermittency. Additionally, complex-continuous (p=0.0318) and simple-continuous 

(p=0.0014) resulted in significantly higher EEG activity compared to simple-bandwidth. 

For the beta band, complex-bandwidth generated significantly higher (p=0.0384) EEG 

activity during training than simple-bandwidth. Figure 20 presents a brain map of EEG 

alpha band activity averaged over all participants for simple-continuous and simple-

bandwidth (Post/Pre). The simple modes are further examined since they result in better 

performance than complex modes. The higher alpha band activity preserved in post-

training was generally distributed across the entire brain, including motor and sensory 

areas, suggesting a shift to continuous feedback produced a uniform effect on brain activity.   
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Figure 19. Electroencephalography results indicate change in alpha or beta band 

power during either training or post-training from pre-training.  
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Table 8: Electroencephalography Alpha Band (8-12Hz) and Beta Band (13-30Hz) power  

as the relative change from pre-training to training (Train/Pre)  

and pre-training to post-training (Post/Pre) 

Table 8A: Mean EEG results for across visual feedback modes 

Metric: 

Visual Feedback Modes 

CC CB SC SB 

Alpha Band – Train/Pre 1.08±0.12 1.07±0.26 1.11±0.21 1.06±0.24 

Beta Band – Train/Pre 1.04±0.06 1.15±0.13 1.09±0.13 0.96±0.17 

Alpha Band – Post/Pre 1.14±0.14 0.96±0.20 1.08±0.19 0.91±0.20 

Beta Band – Post/Pre 1.06±0.17 1.09±0.32 0.94±0.20 0.98±0.30 

Table 8B: Two-way ANOVA results based on factors of complexity and intermittency 

Metric: 

Complexity Intermittency 

Chi-square p-val Chi-square p-val 

Alpha Band – Train/Pre 0.05 0.824 1.08 0.299 

Beta Band – Train/Pre 0.93 0.334 0.09 0.766 

Alpha Band – Post/Pre 0.45 0.504 6.38 0.012 

Beta Band – Post/Pre 1.24 0.265 0.09 0.766 

Note: Visual Feedback Modes – (CC) Complex-Continuous – (CB) Complex-Bandwidth  

– (SC) Simple-Continuous – (SB) Simple-Bandwidth  

Note 2: Significant P-values (p<0.05) bolded 
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Table 9: Post hoc results comparing EEG band powers between pairs of  

visual feedback modes 

Table 9A: P-values for Alpha Band – Training/Pre 

 CC CB SC SB 

CC x 0.904 0.734 0.827 

CB x x 0.692 0.923 

SC x x x 0.584 

Table 9B: P-values for Beta Band – Training/Pre  

 CC CB SC SB 

CC x 0.072 0.322 0.212 

CB x x 0.474 0.038 

SC x x x 0.092 

Table 9C: P-values for Alpha Band – Post/Pre  

 CC CB SC SB 

CC x 0.104 0.552 0.032 

CB x x 0.248 0.600 

SC x x x 0.001 

Table 9D: P-values for Beta Band – Post/Pre 

 CC CB SC SB 

CC x 0.778 0.086 0.485 

CB x x 0.065 0.444 

SC x x x 0.768 

Note: Visual Feedback Modes – (CC) Complex-Continuous – (CB) Complex-Bandwidth  

– (SC) Simple-Continuous – (SB) Simple-Bandwidth  

Note 2: Significant P-values (p<0.05) bolded 
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Figure 20. Brain map of EEG activity averaged for all participants. 

Electroencephalography (EEG) results to indicate changes in average alpha band 

activity during post-training from pre-training for simple-continuous (LEFT) and 

simple-bandwidth (RIGHT). 
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5.11.3.   Electrodermal Activity 

Figure 21 presents the relative 

changes in electrodermal activity 

for each visual feedback mode, 

from pre-training to training. 

Significant differences were 

observed for the factor of 

complexity (Table 10) and across 

individual feedback modes (Table 

11). No significant interactions 

were observed between factors of 

complexity and intermittency. 

Simple feedback resulted in 

significantly higher (p=0.0239) 

skin conductance during training 

than complex feedback. 

Furthermore, complex-bandwidth 

feedback resulted in significantly 

lower conductance that either simple-continuous (p=0.0377) or simple-bandwidth 

(p=0.0218).  

  

 

Figure 21. Relative change in electrodermal 

activity results during training compared to pre-

training for each feedback mode.  
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Table 10: Electrodermal activity during training with each feedback mode. Results presented 

as the mean skin conductance during training divided by pre-training (Train/Pre) 

Table 10A: Mean EDA results (microsiemens) 

Metric: 

Visual Feedback Modes 

CC CB SC SB 

Training/Pre 1.39±0.18 1.43±0.07 1.56±0.03 1.56±0.12 

Table 10B: Two-way ANOVA results based on factors of complexity and intermittency 

Metric: 

Complexity Intermittency 

Chi-square p-val Chi-square p-val 

Training/Pre 5.10 0.024 0.17 0.681 

Note: Visual Feedback Modes – (CC) Complex-Continuous – (CB) Complex-Bandwidth  

– (SC) Simple-Continuous – (SB) Simple-Bandwidth  

Note 2: Significant P-values (p<0.05) bolded 
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Table 11: Post hoc results comparing EDA between pairs of visual feedback modes 

Table 11A: Post hoc comparisons, p-value,  

between visual feedback modes for EDA activity – Training/Pre 

 CC CB SC SB 

CC x 0.733 0.197 0.304 

CB x x 0.038 0.022 

SC x x x 0.973 

Note: Visual Feedback Modes – (CC) Complex-Continuous – (CB) Complex-Bandwidth  

– (SC) Simple-Continuous – (SB) Simple-Bandwidth  

Note 2: Significant P-values (p<0.05) bolded 
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5.11.4.     Agency (Survey) Results 

The mean survey score (80.65) for the perception of control (agency) was normalized for 

each participant by subtracting the mean across visual feedback modes to highlight better 

the model-level differences in survey scores (Figure 22A). The mean values for each 

feedback mode were: complex-continuous = 83.5/100, complex-bandwidth = 81.6/100, 

simple-continuous = 81.5/100, simple-bandwidth = 76/100. A significant difference 

(p=0.0249) was observed between complex-continuous and simple-bandwidth. No 

significant differences were observed based on factors of complexity or intermittency. 

Figure 22B plots agency against pathlength performance (relative change in score from 

pre-training to post-training).  

  

 

Figure 22. Survey results. A) Survey score results for agency for each visual 

feedback mode. B) Agency results versus relative change (pre to post) in pathlength 

score performance.  



101 
 

 

5.11.5.    EEG and Agency versus Pathlength Score by Participant 

EEG and agency results were additionally evaluated against Pathlength Score at a 

participant-specific level (Figure 23). For each participant, EEG alpha band power was 

plotted against Pathlength Score, both presented as post-training/pre-training, and a linear 

regression line was fitted for each visual feedback mode. The linear regression line for 

simple-continuous has a distinct negative slope, indicating higher cognitive loading 

resulted in lower performance. Additionally, agency results were plotted against Pathlength 

Score. Both simple feedback modes had a regression line that was notably negative, 

indicating that higher agency resulted in lower performance. For simple feedback, higher 

performance (Pathlength Score) is related to lower cognitive activity and lower agency. No 

significant differences were found for the slope of any regression lines. 
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Figure 23. EEG and Agency versus Pathlength Score by Participant. TOP) EEG 

alpha band power and Pathlength Score both presented as post-training/pre-training. 

BOTTOM) Agency (survey) results and Pathlength Score (Post/Pre). 
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5.12. Discussion 

This study primarily investigated changes in force-based motor performance with 

variations in features of augmented visual feedback, namely, complexity and intermittency. 

We leveraged a novel rehabilitative platform utilizing a computerized interface (i.e., 

immersive virtual reality) and a position-adjustable arm brace that provides gravity support 

during isometric strength training. My results demonstrated that variations in visual 

feedback features could generate significant differences in post-training performance. My 

results do not reflect true motor learning [188], which requires demonstration of long-term 

retention and skill acquisition; however, immediate (short-term) performance effects can 

be indicative of learning potential [189] and promise for neuromotor rehabilitation [190]. 

Immediate performance effects were characterized according to a relative change from pre-

training to post-training for each participant and the feedback mode used for augmented 

guidance. For the point-to-point motor task in VR, simpler feedback (i.e., end-effector 

guide only) appeared to be more effective in improving performance. This more simple 

guide provided continuously produced the best pathlength performance overall.    

 I presented more complex feedback for this force-based task (i.e., participant held 

isometrically) with the inclusion of the links preceding the end-effector of the guide arm. 

In my previous work investigating visual feedback features for a motion-based task (i.e., 

participants' own motions drive computer display) [7], there was a single segment (thigh) 

whose observed motions were the primary trajectory target for performance. More complex 

feedback was presented as additional segment trajectories to match, namely the torso and 

shank. That study suggested that complex feedback representing the intrinsic coupling of 
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all body segments facilitated better tracking of the thigh segment due to functional 

constraints for the squat. In the current study, the target segment to track is the end-effector, 

and motions of the links are constrained to the end-effector through inverse kinematics. 

While the presentation of these link positions is, in fact, extraneous to the primary target 

of the end-effector, its inclusion as additional real-time feedback tests whether presenting 

a kinematic synergy facilitates better motor learning. A major distinction with this study 

from my previous work with the squat task is that the participant is held isometrically and 

cannot dynamically embody [156] with the motion feedback being presented in real-time. 

Thus, complex feedback might only be effectively leveraged towards improved motor 

performance for rehabilitation paradigms utilizing motion-based inputs that allow the user 

to embody the avatar fully. It may be necessary and more challenging for a force-based 

task to effectively display kinetic synergies as complex feedback for rehabilitating motor 

coordination [191]. In this study, the additional information presented may have been 

perceived as distracting [51] or irrelevant to the primary objective [61]. Thus, my 

hypothesis regarding complexity was refuted for the presented motor task.  

 My hypothesis regarding intermittency is also refuted as continuous feedback 

outperformed bandwidth feedback. However, this result is consistent with my previous 

work investigating intermittency effects with the squat task [8]. In both studies, the 

guidance hypothesis [78] was not confirmed, suggesting these computerized rehabilitation 

protocols may not be able to facilitate the development of intrinsic mechanisms within a 

single session. Thus, follow-up sessions may be necessary to confirm the relevance of the 

guidance hypothesis to these specific motor paradigms, motion- and force-based tasks, with 
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computerized feedback. Furthermore, the guidance hypothesis with intermittent feedback 

is often predicated on knowledge of results with terminal feedback [59]. Thus, a novel 

element of the current study is the inclusion of intermittency with concurrent feedback. 

However, given concurrent feedback's proven effectiveness in generating immediate 

performance [78], it is crucial to examine ways to leverage concurrent feedback in creating 

VR rehabilitation protocols that can further accelerate gains in motor function. As in my 

previous motion-based squat protocol, we did examine "potential learning" in terms of the 

relative retention in performance in post-training with no feedback after receiving 

augmented guidance during training. In the squat protocol, this potential learning was 

greater with bandwidth protocols. In the force-based task, due to only testing four visual 

feedback modes instead of six as in the motion-based task, additional trials were added to 

create a new pre-training (baseline) phase. Therefore, potential learning was evaluated as 

the relative difference between post-training (retention) and the new pre-training phase 

(baseline) completed before training. During the VR reaching task, training with concurrent 

bandwidth feedback induced significantly lower cognitive activity than continuous 

feedback, regardless of complexity. Amongst simple feedback, determined superior for 

performance, higher performance was related to lower cognitive stress (alpha band power), 

lower sense of agency (survey score), and higher physical stress. Lower alpha band activity 

is related to a greater focus on external objects during VR rehabilitation [129], which leads 

to greater performance and retention compared to an internal focus [3]. Lower alpha band 

activity [192] and lower cognitive activity identified via fMRI [193] indicates greater 
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potential motor learning as participant experience increases and movements are completed 

more automatically and less consciously [62]. 

In this study, we observed two sets of user-centered metrics as potential explanatory 

variables for the performance with various modes of training feedback. First, we observed 

explicit agency from the survey responses, indicating that participants perceived complex-

continuous augmented guidance provided greater control of the virtual arm than simple-

bandwidth. Complex-continuous theoretically provided the most guidance, i.e., the guide 

robot arm are displayed fully (end-effector and arm links) and constantly during training. 

It is plausible that participants assumed the guide arm generated greater control or projected 

their intended actions on the guide arm versus the actual arm. My laboratory's previous 

findings measured agency implicitly for simple computerized reach [194] and grasp [195] 

tasks positively correlated with improved performance. This study suggests that a 

constrained myoelectric task may generate a perceptional inversion. Participants are not 

always aware of what is most beneficial to them for motor learning [3]. Participants may 

make selections based on comfort and neglect the possibility that challenging scenarios, 

which may be uncomfortable, will be more advantageous for motor learning.  

Physiological measures such as EEG and EDA provide a more objective basis to 

discern fundamental user-centered responses. As inferred through cognitive loading, 

increased engagement can produce better performance in a VR environment [196]. When 

significant differences were discernible, this study confirmed, as expected, that simpler and 

intermittent feedback reduced EEG power. Since simpler feedback generally produced 

better performance, it may be inferred that complex feedback, as presented here, may have 
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resulted in overloading that diminished performance [197]. Alternatively, simpler feedback 

generally produced greater physical arousal, as indicated by higher electrodermal activity 

[174]. For this study, the simpler feedback may have supported the user to be more 

physically engaged, without mental distraction, towards improved motor performance. 

 The major limitations of my study to demonstrate how variations in augmented 

visual guidance for training affect motor learning include constraints on the task, motor 

transference, and long-term retention. The task control space was limited to 2D due to 

challenges in attaining robust multi-dimensional control through the enacted pattern 

classifiers. More advanced machine learning methods for 3D myoelectric control [198], 

[199] may be enacted. However, the deployment of such approaches must be balanced 

against the feasibility considerations of time to train within single sessions [135] and 

classification accuracy [200]. Feasibility is crucial for clinical populations with reduced 

and compromised muscle sets to identify myoelectric commands [31], [135]. Ultimately, 

improved motor skill acquisition [153], [201] must be demonstrated by testing functional 

abilities in generalizable contexts that differ from training. Functional gains with isometric 

testing must be exhibited through improved abilities to perform dynamic tasks that better 

represent activities of daily living [40], [202]. Additional modifications could be pursued 

to facilitate better motor control, even within the training paradigm [112]. We did employ 

a measure of strategy to support motor control objectives by allowing users to self-select 

the order or target pursuits during testing blocks. However, more complex tasks (e.g., 3D 

control, additional tasks beyond point-to-point contact) are more versatile for synergistic 

control. Synergistic control involves manipulating the end-effector through forward 
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dynamics [203], whereby the user enacts control upon a robot arm's elbow and shoulder 

joints. 

5.13. Conclusion      

In optimizing VR training for a force-based motor task, the complexity and intermittency 

of augmented visual guidance can significantly influence the resultant motor performance. 

When training upper-extremity function, additional visual feedback about the forearm and 

upper arm may be unnecessary when the primary objective is end-effector accuracy. For a 

virtual reaching task, training with simpler feedback (i.e., about end-effector only) resulted 

in significantly greater motor performance (e.g., minimal pathlengths, shorter completion 

times) and higher arousal (electrodermal activity). Furthermore, training with feedback 

presented more intermittently (i.e., bandwidth) resulted in improved muscle-level control 

in conjunction with lower cognitive (alpha band) activity. These post-training results with 

simple-bandwidth feedback indicated that participants were more positively allocating 

resources to physical engagement and performance. Future studies should investigate 

longitudinal comparisons of VR-based therapies that systematically leverage augmented 

visual guidance to conventional treatments and non-optimized VR protocols to determine 

if these performance advantages exist for similar therapeutic dosages. Furthermore, 

advanced feedback control systems to adapt VR rehabilitation systems for greater 

personalization for individual users may consider varying training features according to 

online measures of physiological variables (e.g., EEG, EDA).    
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6. PRIMARY CONCLUSIONS AND FUTURE DIRECTIONS 

Following neurological trauma, clinical motor rehabilitation can be frustrating due to its 

rigorous and repetitive nature. Fortunately, computerized interfaces, primarily virtual 

reality, can provide additional motivation during physical rehabilitation and create 

enhanced forms of augmented visual feedback. Augmented visual feedback provides 

transformed displays of participant performance, relaying additional task information in 

real-time for immediate performance improvements. Unfortunately, the exact mechanisms 

behind leveraging VR and augmented visual feedback to improve motor learning is 

unknown. I identified a lack of optimization in the deployment of clinical rehabilitation 

and computerized interfaces, emphasizing improving motor performance. Therefore, my 

approach was to systematically leverage specific features of augmented visual feedback, 

mainly complexity and intermittency, for a motion- and force-based task. I examined how 

augmented visual feedback features affect training and retention of motor performance. I 

also identified potential avenues for expanding future research. 

For a motion-based task, the two-legged squat, complex-representative modes 

increased motor performance more during training and retention compared to feedback 

deemed simpler and abstract. All motion-based tasks require some level of force-

modulation, such as pushing off the ground during the squat exercise or reaching 

movements against gravity. Specifically, motion-based tasks involve changes in joint 

angles with multiple moving body segments. The motor outcomes for the squat exercise 

are influenced by one major performance variable, identified as changes in squat depth or 

thigh angle. My approach evaluated the differences behind guiding multiple body segments 
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with complex feedback versus representing the movement as a single target driven by 

simple feedback. Simple feedback only provided information about the thigh segment 

angle, while complex feedback provided information about additional shank and torso 

body segments. We identified that the additional information from complex feedback was 

beneficial, but only if presented with clear body-discernible features. Training with 

complex-abstract feedback represented as disjointed lines was more challenging for the 

participant to stabilize performance. Complex-representative feedback presented as lines 

connected at presumed joint locations increased the motor performance and presumed 

embodiment with the visual feedback. Increased embodiment with the visual feedback 

during training led to an increase in the development of intrinsic mechanisms and 

independent movement strategies. Although simple and abstract feedback modes may have 

been advantageous during training, retention performance was negatively affected as 

participants could not effectively recreate the movement under independent control. 

For the force-based task, controlled through isometric muscle activations, simple 

feedback showed the greatest potential to improve motor performance than complex 

modes. Force-based tasks primarily involve the modulation of a single force target or 

amplitude signal. Force-based tasks may more effectively train with simple feedback that 

removes erroneous feedback elements. The additional information provided during 

complex feedback was irrelevant to the primary objective, end effector accuracy, and any 

increase in embodiment was ineffective. For the force-based task, high performance with 

simple feedback was related to lower cognitive activity (cognitive stress), lower agency, 

and higher EDA (physical stress). Following training with simple or bandwidth feedback 
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modes, a lower cognitive activity could indicate that participants' motor control 

transitioned to more automatic processes [62]. Movements controlled consciously in the 

early stages of motor learning produce higher cognitive activity. I postulate that this effect 

during post-training trials is a residual effect following training with augmented visual 

feedback. No significant differences observed during training could result from the gradual 

training effect over ten trials, and the average impact over the whole phase was 

insignificant. This finding is different than the result for the two-legged squat experiment, 

where additional target information during complex feedback was beneficial for 

performance. It may be necessary and more challenging for a force-based task to 

effectively display kinetic synergies as complex feedback for rehabilitating motor 

coordination.  

There were limitations in directly comparing the results between the motion- and 

force-based tasks presented in this research. One of the limitations was that the additional 

information provided during the squat exercise was independently controlled, which was 

not the case for the force-based movement. During the force-based VR task, the additional 

forearm and upper arm target feedback were driven through inverse kinematics and may 

have been irrelevant to the primary objective. The participants were only able to control 

the end effector and end effector accuracy, the primary performance metric. Another 

significant difference between the two tasks was that the participants transformed display 

of performance never changed based on visual feedback modes for the VR reaching task. 

Unlike the squat exercise, where it was possible to train the motion without participant 

feedback performance, such as bandwidth feedback, it was necessary to constantly provide 
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the participant position for the VR reaching task to complete the movement effectively. 

For example, it would be possible to display bandwidth or simple-representative feedback 

targets for the squat task while displaying the participant position as complex-

representative. Hülsmann et al. developed a similar approach for the squat exercise by 

constantly displaying participants' positions in a 3D VR space while providing additional 

bandwidth-abstract feedback to highlight position errors [204]. The increased embodiment 

based upon specifically target feedback features, and not a combination with participant 

feedback, was not established and would be an interest in future studies. Another limitation 

was that the augmented visual feedback during the squat exercise was displayed as a third-

person perspective. In contrast, the VR-based reaching task utilizing the head-mounted 

showed a first-person view. 

 Concurrent bandwidth feedback showed potential for improving short-term 

retention in a motion-based task and decreasing cognitive activity in a force-based task. I 

firmly believe concurrent bandwidth augmented visual feedback in immersive VR 

environments should be leveraged for improving clinical motor rehabilitation. 

Bandwidth feedback has been extensively researched in terminal feedback forms because 

conventional rehabilitation paradigms cannot create the concurrent bandwidth visual cues 

possible in VR environments. Whether the perspective is first- or third-person, VR-based 

training with continuous feedback from virtual avatars has shown to be effective for 

guiding spatial positioning [74], [204]. However, concurrent bandwidth VR-based 

feedback has not been extensively researched. A significant limitation of both studies was 

the lack of longitudinal results, which would indicate the long-term learning effects of 
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concurrent bandwidth feedback. Compared to continuous feedback for the two-legged 

squat, training with bandwidth feedback resulted in higher potential learning with higher 

relative performance levels during short-term retention tests. Training with bandwidth 

feedback removed the participant and target position during times of low error and forced 

the participants to develop independent movement strategies. Training with concurrent 

bandwidth also produced significantly lower cognitive activity (alpha band power) during 

the VR force-based task than continuous feedback during post-training trials. Increased 

alpha activity power is related to higher internal processing during VR-based cognitive 

studies [129] and indicates the participant is still consciously completing the action [62]. 

The decrease in alpha activity during post-training trials for the forced-based task may 

indicate that training with bandwidth feedback exhibited a higher focus on external 

processes for motor control. External processes are more effective for motor control as a 

focus on internal mechanisms can constrain the motor system by interfering with automatic 

control processes [3]. The decrease in alpha activity could also indicate that training 

resulted in greater muscle level control automatically and less activity of conscious force-

based actions [62]. My research did not focus on cognitive activity as a primary interest 

measure and evaluated average changes in activity across all EEG sensors. Future studies 

should explore the effects of bandwidth feedback on individual brain regions, such as the 

motor and sensory cortexes. The changes in cognitive activity during force-based actions 

may benefit concurrent bandwidth feedback deployment for all motor tasks. This approach 

can expand cognition and motor performance knowledge because measuring EEG activity 

during motion-based tasks may be difficult. 
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 My final takeaways are that there are significant and unique differences in motor 

performance outcomes with variations in augmented visual feedback. The effects of 

augmented feedback depend upon the type of task, motion- or force-based. Measures for 

well-being, such as physiological stresses or sense of agency, may also be influenced by 

variations in augmented feedback. In optimizing computerized interfaces for rehabilitation, 

features of augmented visual feedback should be selected based on: 

1. The type of movement function to restore or rehabilitate 

2. Whether the participant can embody the augmented feedback 

3. The experience of the user and their well-being during training  

 Future directions should investigate augmented multimodal feedback for motion-

based tasks. My results indicate that multimodal feedback would not be practical for force-

based tasks as simple feedback is already more effective than more complex modes. 

However, motion-based exercises, especially multi-DOF movements with naïve 

participants, may benefit from multimodal feedback, especially in the early stages of motor 

learning. The provision of multiple visual feedback cues [204], or a combination of visual 

and haptic cues [83], [114], [124], may further accelerate performance for motor tasks. 

Over an extended period, feedback should be gradually reduced, changing from concurrent 

continuous to bandwidth, and finally, terminal in the latter stages of motor learning—

however, caution not to relate changing the complexity of the feedback to gradually 

reducing frequency.  
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In summary, my results indicate: 

• For a motion-based task, the two-legged squat, complex-representative modes 

increased motor performance more during training and retention compared to feedback 

deemed simpler and abstract. However, for the force-based task, controlled through 

isometric muscle activations, simple feedback showed the greatest potential to improve 

motor performance than complex modes. Concurrent bandwidth feedback showed 

potential for improving short-term retention in a motion-based task and decreasing 

cognitive activity in a force-based task.  

• My final takeaways are that there are significant and unique differences in motor 

performance outcomes with variations in augmented visual feedback. Future directions 

should investigate augmented multimodal feedback for motion-based tasks. 
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8. APPENDIX 

8.1.  How it all started - Red tape augmented visual feedback 

It is exciting to look back and see where my research started to where it ended up. At the 

beginning of the Ph.D. journey, augmented visual feedback was not my initial plan. The 

desire for visual feedback came about when figuring out how to get someone to squat the 

same way in two separate locations. The goal was to have the participant squat in the lab 

using motion capture equipment to analyze kinematics, and then subsequently squat the 

same way at a medical facility immediately before getting an MRI. The research objective 

was to use the MRI data for creating high quality computer simulations used to model 

participant kinematics and kinetics during the squat exercise. The first idea for visual 

feedback was created following my experience with an Introduction to Robotics course. 

During the course I learned how to analyze differences in color from an image. Therefore, 

I went down a rabbit hole of using colored tape to track thigh angle position (Figure 24). 

Different color tape was evaluated, with red being the winner and easiest to identify. Next, 

a camcorder was used to display the tape position and thigh angle. For real-time tracking, 

a rubber band or tape was put over a computer monitor position in front of the participant 

as the target to match at the desired squat depth. For off-line analysis, changes in angle of 

the colored tape were used to calculate changes in thigh angle position. At each frame, the 

outline and shape of the tape was identified separate from the background, and a line was 

generated through the middle to represent the thigh angle.  
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Red tape used to track thigh angle during my early research years 

 

Figure 24. The first creation of augmented visual feedback utilized a camcorder and a 

piece of red tape on the thigh to represent thigh angle. For real-time feedback, a 

rubber band or additional piece of tape was placed over the monitor as a target to 

match for squat depth. The outline and shape of the tape was processed off-line using 

MATLAB color analysis to determine changes in thigh angle.  
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8.2.  Supportive Brace Apparatus 

The primary module of Aim 2, the force-based task, was a custom upper extremity 

supportive brace apparatus (Figure 25). As described in further detail in the Methods of 

Aim 2, the primary objective of the brace is to immobilize the forearm and upper arm to 

support the arm against gravity and provide restrictive forces for isometric training. The 

brace was constructed using computer aided design (Solidworks) and the original prototype 

included a chest plate. The chest plate was intended to use the participants body weight for 

helping to restrict their own forces, thus creating an all-in-one design. The participant 

would not need an external fixation device such as a table, and it would allow the 

participant to wear the brace while standing. The benefits for wearing the brace while 

standing are enhanced gamified environments that include gait or rotation movements 

during VR-based tasks. 
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Supportive brace apparatus for upper extremity isometric experiments 

 

Figure 25. Computer aided design of the supportive brace with a prototype for the 

chest plate. The arm mount is the primary module for restricting flexion and 

extension of the elbow joint. The two revolute joints and adjustable rod attach the arm 

mount to the chest plate and restrict shoulder ab/adduction and in/external rotation. 
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8.3.  Augmented Vibrotactile Feedback 

Two pilot experiments were conducted on the effects of vibrotactile feedback with the 

supportive brace. One utilizing vibrotactile feedback in an explicit form, directly guiding 

task performance. The other utilizing vibrotactile feedback in implicit form, directly 

increasing EMG activation. The same VR environment and experimental protocol 

presented in Aim 2 were reevaluated with two unimodal vibrotactile and one multimodal 

feedback mode in the explicit experiment. The three sensory feedback modes were 

compared to a fourth control group, and the same performance metrics were evaluated 

pathlength score and completion time. Five neurotypical participants completed the 

explicit vibration experiment. In the implicit vibrotactile feedback experiment, direct 

vibration on the muscle-tendon junction was used to increase EMG activity during 

isometric contractions. We aimed to identify vibration patterns that could increase EMG 

activity in a controlled and systematic way. The objective was to increase the separability 

between muscle activation clusters within the machine learning classifier used for 

commanding the virtual device. We hypothesized that real-time vibration could increase 

muscle activation clusters' separability and lead to greater classification accuracy and 

improved control of the virtual device. 
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8.3.1.   Explicit Vibrotactile Feedback 

Explicit vibrotactile feedback can directly guide the participant towards a movement 

trajectory through an attraction or repulsion sensation. When position error to the target 

begins to increase during a movement task, the participants move toward the vibration 

during attraction types and away from the vibration during repulsive types. For simple 

motor tasks, such as standing balance, allowing the participant to choose their preferred 

method, attraction or repulsion, results in a higher score than choosing one that is undesired 

or feels unnatural to the task. This decision supports allowing the participants to make 

decisions within the experiment to increase agency and sense of control. When compared 

against each other, repulsive feedback has shown to be more effective than attractive and 

is often considered the standard for explicit guiding experiments [106].  

In this study, the same experimental protocol presented in Aim 2 was used for 

evaluating unimodal and multimodal feedback paradigms of vibrotactile feedback (Figure 

26). Twelve small coin motors were used to translate position error magnitude and 

direction changes. Three coin motors were attached vertically (or in a cluster) at the same 

height on the torso and equally placed on the participants' left, right, center, and back. For 

reference to height, the front motors were placed just below the sternum, and the back 

motors were placed at least 5 cm below the lower trapezius EMG sensor. Three coin motors 

were used instead of only one to distinguish changes in magnitude. 

The three sensory feedback modes and one control group were described as 

follows: Control – no visual or vibrotactile feedback was provided during the training 

phase, Simple-haptic – the magnitude of position error to the shortest path between targets 
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was the only information provided in real-time, and all vibration motors turned on and off 

together, Complex-haptic – the magnitude of position error was matched with a direction 

component as motors only turned on when acting as a repulsive sensation to guide 

participants towards the shortest path between targets, Multimodal feedback – simple-

bandwidth visual feedback was combined with complex-haptic feedback. The vibrotactile 

feedback supported the simple-bandwidth information in the multimodal feedback mode 

and relayed the same information to reinforce performance improvement. To elicit changes 

in vibration magnitude for all haptic feedback modes, the bandwidth range from low-error 

threshold to high-error threshold was divided up into three equal quadrants between 0 and 

100%. The group of coin motors turned on either one (0-33%), two (34-66%), or all three 

(67-100%), based upon the percentage of user position error. 
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Explicit vibrotactile feedback on the torso to guide motion during VR tasks 

 

Figure 26. Explicit vibrotactile feedback involved coin motors attached to the torso 

for guiding direction during movement tasks. Vibration was provided in a repulsive 

direction, i.e., vibration on the right directed to move to the left (move away from the 

vibration). 
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8.3.2.   Implicit Vibrotactile Feedback 

Implicit vibrotactile feedback has unique properties compared to other forms of haptic 

feedback, such as applied forces and changes in pressure. During isometric exercises, EMG 

activity increases by applying indirect vibration through an external device, such as a 

vibrating handle or standing platform. Direct vibration, applied by placing motors directly 

on the muscle-tendon junction, can also increase EMG activity as well as create an illusory 

movement effect by altering afferent neurological signals and activating muscle stretch 

reflexes. The increase in EMG activity is a result of recruiting additional muscle fibers. 

This can be therapeutic or even rehabilitating when provided in shorter durations but can 

accelerate muscle fatigue during isometric strengthening exercises. 

 In this study, the objective was to systematically identify vibration patterns that 

could be utilized to increase the EMG activity of the upper-arm and torso muscles. Once 

vibration patterns were identified through pilot testing, real-time implicit vibrotactile 

feedback would be used in the same experimental protocol as Aim 2. The implicit feedback 

would be provided to increase the separability between the EMG activity clusters used to 

command the virtual device. The support vector machine responsible for mapping 

isometric activations to direction intent relies upon the unique EMG patterns for discerning 

different commands. We hypothesize that increasing the separability of EMG activity 

between the direction clusters will lead to improved real-time control of the virtual device 

and an increase in classification accuracy. 

Vibration motors were placed on the muscle-tendon junction of four muscles to 

evaluate the effects of real-time vibration during isometric contractions (Figure 27). 
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Muscles evaluated were the biceps brachii, triceps brachii, pectoralis major, and back 

(primarily trapezius low and mid). For the biceps and triceps brachii, two coin motors were 

taped to the distal and proximal end of the muscles at the muscle-tendon junctions, above 

and below the restrictive brace straps. For the pectoralis major and back muscles, vibration 

motors were taped equidistantly around the EMG sensors at least 5 cm away. For each trial, 

the vibration motors followed the same pattern, first no vibration to indicate a control and 

baseline EMG activity, then the biceps brachii, triceps brachii, pectoralis major, and back. 

During a 15-second isometric hold at 20% or 40% MVIC, individual motors were turned 

on and off at 1.5-second intervals to determine the effects on EMG activity. Pilot 

experiments indicated higher quality motors, i.e., LRAs and not ERMs, are required for 

eliciting the desired effect.  
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Implicit vibrotactile feedback to increase EMG activity during isometric tasks 

 

Figure 27. Implicit vibrotactile feedback to affect the afferent neurological pathways 

and muscle stretch reflexes to induce changes in neurophysiological signals or 

perceived proprioception during isometric exercises. Vibration to the triceps brachii 

can increase EMG activity and induce an illusory movement effect of arm flexion. 
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8.4.  Sense of Agency 

Throughout my research, I assisted extensively with additional projects that evaluated the 

effects of cognitive agency and how to leverage cognitive factors for improving physical 

rehabilitation. Sense of Agency (SoA) can be defined as the sense of control one has over 

their actions. This sense can be diminished in clinical populations, and this results in 

reduced motor function and ability to complete ADLs successfully. Along with SoA, other 

cognitive factors, including attention, memory, and cognitive engagement, play a role in 

physical rehabilitation at a participant-specific level. SoA is uniquely valuable in virtual 

reality-based physical rehabilitation when the participants' body position is occluded while 

wearing the head-mounted display. Two major research studies were conducted that 

evaluated the effects of SoA with altered control mechanisms. 
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8.4.1.   Pinch and Reach VR 

Participants completed a force-based grasping task and a motion-based VR reaching task 

with different control mechanisms (default, slot, fast, auto, and noise) to determine the 

optimal effects on performance and SoA [194], [195] (Figure 28). Intentional binding was 

used to measure the participants SoA. Immediately after completing a short force- or 

motion-based task, the participants would hear an audio beep at a random time internal 

between 0.1 and 1.0 seconds. The participants were instructed to estimate the delay 

interval. Literature states that average underestimation of the delay represents an increase 

in SoA with the control mechanism. Our results indicated that higher performance (lower 

error to the primary objective) was correlated to higher SoA. My lab published multiple 

papers [194], [195], [205] and a textbook chapter [206] with the results of these 

experiments. 
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Sense of Agency evaluated through force- and motion-based tasks 

 

Figure 28. Sense of agency was initially evaluated over two experiments, TOP) a 

force-based experiment utilizing hand grasp of force measurements, and BOTTOM) a 

motion-based reaching experiment within a virtual reality environment. 
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8.4.2.   Cognition Glove 

In the second phase of the SoA research, a wearable smart glove was developed to 

artificially enhance the participants' SoA during reach-to-grasp tasks [207] (Figure 29). 

Pressure sensors were stitched to the glove under each finger and force inputs were used in 

a machine learning algorithm to indicate secure grasp. Sensory feedback from the glove 

was used to indicate to the participant they received secure grasp in both real-world and 

virtual scenarios. Sensory feedback attached to the glove as an audio beeper, a LED light, 

and a smaller vibration motor. In the real-world, the effects of immediate versus delayed 

sensory feedback were evaluated on able-bodied participants [207]. In able-bodied and 

clinical experiments, the effects of the sensory feedback from the glove were compared to 

enhanced visual and audio feedback provided in a VR environment. The objective was to 

identify features of sensory feedback that could be leveraged to enhance SoA and have the 

greatest positive impact on performance and retention results. Additionally, my lab was 

interested in evaluating the neurophysiological signals to determine cognitive adaptations 

to motor learning.  
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Training with a Cognition glove to enhance a participant’s Sense of Agency 

 

Figure 29. A custom wearable device, the Cognition glove, was developed by the 

MOCORE Laboratory to enhance the participant’s Sense of Agency during reach-to-

grasp tasks. The glove could also integrate with virtual reality to provide enhanced 

forms of visual feedback. The device was tested on clinical populations including 

spinal cord and traumatic brain injuries. 
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8.5.  Community Outreach 

While working in the MOCORE Laboratory (and before COVID) my lab participated in 

various community outreach programs geared towards teaching students about engineering 

and our research. We created interactive workshops, i.e., fun games geared around our 

experiments, and presented experiments that guided them through the biomedical 

engineering field on a high level. During the summer of 2019, multiple local groups visited 

the MOCORE Lab. Each visit would begin with a presentation, explaining our research 

and background information on biomedical engineering and biomechanics. Next, students 

would complete various interactive workshops related to the experiments our lab has 

previously completed. During one visit, students took turns using the pinch apparatus, the 

VR reach paradigm, and a VR LEAP experiment designed by Samuel Wilder (Figure 30). 

Other lab visits focused primarily on the presentation to give the students a wide range of 

background information related to our research and the field of biomedical engineering 

(Figure 31). The student groups included PICO Solutions (K-6), Stevens CIESE PSEG 

Summer Camp (middle school), and the Stevens Art Harper Academy (high school). 

Finally, I also participated in clinical community outreach opportunities including the 2nd 

Annual Spinal Cord Injury Research Community Fair located at Mount Sinai in Manhattan, 

NY (Figure 32).  
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Hoboken middle school students complete interactive workshops 

 

Figure 30. MOCORE graduate students Sean Sanford, Mingxiao Liu, and Samuel 

Wilder guided local Hoboken middle school students through interactive workshops 

geared around our research. 
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A lab presentation and virtual reality tasks for Hoboken summer students 

 

Figure 31. Sean Sanford and Mingxiao Liu gave a presentation to a group of local 

summer students. Samuel Wilder developed and presented a virtual reality game 

around the LEAP gaming system 
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The MOCORE Lab volunteering at an SCI Community Fair 

 

Figure 32. Members of the MOCORE Lab, Sean Sanford, Mingxiao Liu, and Samuel 

Wilder, participated in clinical community outreach opportunities including the 2nd 

Annual Spinal Cord Injury Research Community Fair located at Mount Sinai in 

Manhattan, NY. 
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8.6.  MOCORE Virtual Reality Education Module 

During COVID, I lead the development of a MOCORE VR education program that focused 

on providing high school students with the opportunities to develop VR programs with our 

assistance. These local NJ students developed simple keyboard-based VR games with our 

guidance of implementing areas of research (i.e., sensory feedback and SoA). Students 

would learn to develop VR games using the Unity engine. I would lead weekly meetings 

where students would present their progress on their games, and then look for us to provide 

feedback on making improvements and how to implement the game into a research study. 

Many of the students would go on to present their research at various high school 

conferences, with one student, the first to join the VR education module, Kwabena 

Boateng, winning 1st place in the 2022 Regeneron Westchester Science and Engineering 

Fair. Along with assisting the students to develop their own VR games, I created a VR 

education module that would teach naïve students the basics of using the Unity engine. I 

developed a basic tutorial that walks through how to create a user-controlled object in Unity 

that changes color upon collision with another object. This introduces the basics of user-

controlled objects with event triggers for creating complex VR-based environments for 

motor and cognitive rehabilitation. 
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